[1]吴莹,倪晓武,陈建平.用PLRC-FDTD法计算微波在激光等离子体中的反射和透射系数[J].南京理工大学学报(自然科学版),2010,(02):257-261.
 WU Ying,NI Xiao-wu,CHEN Jian-ping.PLRC-FDTD Simulation of Microwave Reflection and Transmission Coefficients in Laser-induced-plasma[J].Journal of Nanjing University of Science and Technology,2010,(02):257-261.
点击复制

用PLRC-FDTD法计算微波在激光等离子体中的反射和透射系数
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2010年02期
页码:
257-261
栏目:
出版日期:
2010-04-30

文章信息/Info

Title:
PLRC-FDTD Simulation of Microwave Reflection and Transmission Coefficients in Laser-induced-plasma
作者:
吴莹1 倪晓武1 陈建平2
1. 南京理工大学理学院, 江苏南京210094; 2. 北京航空工程技术研究中心, 北京100076
Author(s):
WU Ying1NI Xiao-wu1CHEN Jian-ping2
1.School of Sciences,NUST,Nanjing 210094,China;2.Beijing Aeronautical Technology Research Center,Beijing 100076,China
关键词:
分段线性递归卷积 时域有限差分 激光等离子体 微波
Keywords:
piecewise linear recursive convolution finite difference time domain laser-induced-plasma microwaves
分类号:
O539
摘要:
用分段线性递归卷积时域有限差分(PLRC-FDTD)数值方法,研究了激光等离子体对微波传输特性的影响。应用该方法计算了微波的反射和透射系数。结果表明:对于均匀等离子体,等离子体频率越大,反射系数越大,透射系数越小;反射系数几乎为0 dB的带宽随等离子体频率的增加而增加;电子碰撞频率越高,反射系数越小,透射系数越大;非均匀等离子体不利于强反射的实现。研究结果为激光等离子体隐身技术提供了理论支持。
Abstract:
The effect of laser-induced-plasma on microwave transmission characteristic is studied using piecewise linear recursive convolution-finite difference time domain(PLRC-FDTD).The microwave reflection and transmission coefficients are calculated.The results show that: with the increase of the plasma frequency,the reflection coefficient increases while the transmission coefficient decreases,and the bandwidth of the reflection coefficient at 0 dB increases with the increase of the plasma frequency.The increasing collision frequency results in the decreasing reflection coefficient and the increasing transmission coefficient.The strong reflection is difficult to realize in inhomogeneous plasma.The results provide a theoretical basis for laser-induced-plasma stealth.

参考文献/References:

[V idm ar R J. On the use o f atmo spheric pressure p las?? m as as electromagnetic reflec to rs and absorbers [ J]. IEEE Transactions on Plasm a Sc ience, 1990, 18( 4): 733- 741.
[2] Sta lder F L, V idm ar L J, Eckstrom J. Observa tions o f strong m icrow ave absorption in co llisiona l plasmas ingradua l density gradients[ J]. Journal App lied Phys?? ics, 1992, 72( 11): 5089- 5094.
[3] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射 体目标雷达散射截面的时域有限差分法分析[ J]. 物理学报, 2004, 53( 8): 2633- 2637.
[4] W angH W, Chen R S. FDTD ana lys is on the effect o f plasm a param eters on the re flection coeffcient o f the e?? lectrom agneticw ave[ J]. Opt Quant E electron, 2007, 39: 1245- 1252.
[5] LiuM H, Hu X W, Jiang Z H, et a.l Finite??difference tmi e??doma in ana lysis of w ave propagation in a thin plas?? m a layer[ J]. Chin Phys Le t,t 2006, 23( 2): 410- 412.
[6] Grego lre D J, Santoru J, SchumacherR W. E lectromag?? netic??wave propagation in unm agnetized plasmas [ R ]. Washingdon: Arm ed Serv ices Techn ical Information A?? gency , 1992, AD250710: 1- 61.
[7] Kelly K L, Scharer J E, D ing G, et a.l M icrowave re?? flections from a vacuum ultrav io let laser produced plas?? m a sheet[ J]. Journa lApp lied Physics, 1999, 85( 1): 63- 68.
[8] Luebbers R J, H unsbe rger F, Kunz K S. A frequency?? dependent finite??d ifference tim e??dom ain form ulation for transient propagation in p lasm a[ J]. IEEE Trans An?? tennas Propaga t, 1991, 39: 29- 34.
[9] Gandh i O P, Gao B Q, Chen J Y. A frequency??de?? penden t finite??d ifference time??dom a in fo rmu la tion for genera l d ispersive m ed ia [ J]. IEEE T ransM icrowave Theory Technica,l 1993, 41: 658- 665.
[10] Su llivan D M. Frequency??dependen t FDTD m ethods u?? sing Z transform s[ J]. IEEE Trans An tennas Propagat, 1992, 40: 1223- 1230.
[11] Chen Q, Ka tsuraiM, Aoyag i PH. An FDTD formulation fo r dispersive m edia using a current density [ J]. IEEE TransAntennas Proga,t 1998, 46: 1739- 1746.
[12] Young J L. Propaga tion in linear d ispersive m ed ia: fi?? nite diffe rence tim e??dom a in me thodo log ies[ J]. IEEE Trans Antennas Propagat, 1995, 43: 422- 426.
[13] Kelley D F, Luebbers R J. Piecew ise linear recurs ive convo lution for d ispersive m ed ia using FDTD [ J]. IEEE T ransAntennas Propagat, 1996, 44: 792- 797.
[14] 庄钊文, 袁乃昌, 刘少斌, 等. 等离子体隐身技 术[M ]. 北京: 科学出版社, 2005: 127- 131.
[15] Cumm er S A. An ana ly sis o f new and ex isting FDTD m ethods fo r iso trop ic co ldplasm a and a m ethod for im?? prov ing the ir accuracy [ J ]. IEEE Trans Antennas Propagat, 1997, 45: 392- 400.
[16] Ke lley D F, Luebbe rs R J. Piecew ise linear vecursive lonvo lu tion fo r d ispersivem ed ia using FDTD[ J]. IEEE Trans Antennas Propagat, 1996, 44: 792- 797.
[17] 莫锦军, 刘少斌, 袁乃昌. 非均匀等离子体覆盖目标 隐身研究[ J]. 电波科学学报, 2002, 17( 1): 69- 73.
[18] 莫锦军, 刘少斌, 袁乃昌. 等离子体覆盖导体柱宽带 散射特性分析[ J]. 微波学报, 2003, 19( 1): 20- 24.
[19] 闫玉波, 董慧, 李清亮. 等离子体涂覆三维目标散 射特性的PLRC??FDTD 分析[ J]. 电波科学学报, 2007, 22( 4): 563- 566.
[20] 刘少斌, 袁乃昌. 温度、密度对目标等离子体隐身 效果影响的FDTD分析[ J]. 航空计算技术, 2003, 33( 11): 8- 12.
[21] 杨宏伟, 陈如山. 等离子体频率特性对电磁波反射的 影响[ J]. 南京理工大学学报( 自然科学版), 2007, 31( 2): 168- 171.

相似文献/References:

[1]高振儒,方 向,赵惠昌,等.复合材料雷体的UWB-EMP耦合效应研究[J].南京理工大学学报(自然科学版),2014,38(04):451.
 Gao Zhenru,Fang Xiang,Zhao Huichang,et al.Coupling effect of UWB-EMP on landmine shell made with composite materials[J].Journal of Nanjing University of Science and Technology,2014,38(02):451.

备注/Memo

备注/Memo:
作者简介: 吴莹( 1982- ), 女, 博士生, 主要研究方向: 微波与等离子体相互作用机理, E-mail: wuy ing8204@ ya?? hoo. com. cn; 通讯作者: 倪晓武( 1955- ) , 男, 博士, 教授, 博士生导师, 主要研究方向: 激光物理、激 光超声、光生物医学、激光测试技术等, E-mail: jsnjnxw@ gm ail. com。
更新日期/Last Update: 2010-04-30