[1]胡健,马大为,程向红,等.用于快速传递对准的自适应联合H∞滤波器设计[J].南京理工大学学报(自然科学版),2010,(03):323-327.
 HU Jian,MA Da-wei,CHENG Xiang-hong,et al.Design of Adaptive Federated H∞ Filter for Rapid Transfer Alignment[J].Journal of Nanjing University of Science and Technology,2010,(03):323-327.
点击复制

用于快速传递对准的自适应联合H滤波器设计
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2010年03期
页码:
323-327
栏目:
出版日期:
2010-06-30

文章信息/Info

Title:
Design of Adaptive Federated H Filter for Rapid Transfer Alignment
作者:
胡健1 马大为1 程向红2 周百令2
1. 南京理工大学机械工程学院, 江苏南京210094; 2. 东南大学仪器科学与工程学院, 江苏南京210096
Author(s):
HU Jian1MA Da-wei1CHENG Xiang-hong2ZHOU Bai-ling2
1.School of Mechanical Engineering,NUST,Nanjing 210094,China;2.School of Instrument Science and Engineering,Southeast University,Nanjing 210096,China
关键词:
快速传递对准 联合H滤波器 自适应算法 Elman网络
Keywords:
rapid transfer alignment federated H∞ filter adaptive algorithms Elman network
分类号:
TN713
摘要:
针对用于快速传递对准的集中式卡尔曼滤波器阶数高、计算负担大、鲁棒性差及对准精度低等问题,该文提出采用联合H滤波器进行快速传递对准。设计了联合H滤波器的结构和算法:该滤波器采用两级数据融合结构,含有2个与传感器相连的子滤波器和1个融合子滤波器输出信息的主滤波器,整个计算任务被分配给2个子滤波器并行完成从而减轻了计算负担。同时利用改进的Elman网络进行信息分配系数的自适应调节和子系统故障检测,以实现融合信息在各子系统中的自适应分配,并对检测出的故障子系统进行隔离。仿真结果表明:该滤波器不仅提高了系统解算速度与鲁棒性,而且使系统对准精度提高了1个数量级。
Abstract:
Considering the high filter order,the huge calculation burden,the poor robustness and the low accuracy of the centralized Kalman filter for rapid transfer alignment,a federated H∞ filter is presented here to realize rapid transfer alignment.The structure and algorithm of the federated H∞filter is designed.The filter employs a two-stage data fusing architecture which contains two sensor-dedicated local filters and a master filter to fuse the local filters’ outputs.The whole task is assigned to be performed synchronously by two local filters.The calculation burden is alleviated.An improved Elman network is proposed to adjust information sharing coefficients adaptively and detect subsystem malfunction to realize the adaptive share of fusing information in each subsystem and isolate the malfunctioning subsystem that has been detected.Simulation results show that the calculation speed and robustness is improved and the alignment accuracy is about one order of magnitude higher by using this method.

参考文献/References:

[1] Shorte lle K J, Graham W R, Rabourn C. F??16 flight tests o f a rapid transfer a lignment procedure[ A ]. IEEE Pos ition Loca tion and Nav igation Symposium [ C ]. Pis?? ca taw ay, N J, USA: IEEE, 1998: 379- 386.
[2] Lyou J, L im Y C. Transfer alignm en t erro r com pensa?? tor des ign based on robust state estim ation[ A] . Trans?? actions of the Japan Soc iety forAeronautica l and Space Sc iences[ C]. Tokyo, Japan: So ciety for Aeronautica l and Space Sciences, 2005: 143- 151.
[3] Gu D Q, Q in Y Y, Peng R, et a.l Rapid transfer a?? lignm ent us ing fede rated Ka lm an filter [ J]. Transac?? tions o f Nanjing Un ive rsity o f A eronautics and A stro?? nautics, 2005, 22 ( 2) : 139- 143.
[4] Yan J G, Yuan D L, W ang XM, et a.l A study o f in?? forma tion fus ion based on federa ted K alm an filter ing [ A]. Pro ceedings o f theW orld Cong ress on Intelligent Contro l and Autom a tion [ C ]. Piscataway, NJ, USA: IEEE, 2006: 1474- 1477.
[5] Jam sha id A, Fang J C. SINS /ANS /GPS integration u?? sing federated K alm an filter based on optim ized in fo r?? m a tion??shar ing coe fficients[ A] . AIAA Guidance, Nav?? iga tion, and Con tro l Con f[ C ]. Reston, VA, USA: AIAA, 2005: 6028- 6040.
[6] 单茂华, 周百令, 黄丽斌. 联合H?? 滤波算法及其在 组合导航系统中的应用研究[ J] . 数据采集与处 理, 2003, 18( 4): 418- 422.
[7] 程向红, 万德钧. 分布式系统中捷联惯性系统动基 座对准研究[ J]. 中国惯性技术学报, 2004, 12( 6): 8- 12.
[8] 谷吉海, 姜兴渭, 王晓锋, 等. 双向E lm an神经网络 在卫星电池阵功率预测中的应用研究[ J]. 南京理 工大学学报(自然科学版), 2004, 28( 4) : 404- 408.
[9] H eH T, T ian X. An improved E lman ne tw ork and its application in fla tness pred iction m ode ling[ A]. Second Inte rna tiona l Con ference on Innovative Computing, In?? form ation and Contro ,l ICIC IC 2007 [ C ]. P isca taw ay, N J, USA: IEEE Compute r Soc iety, 2008: 44- 48.
[10] Cheng Y C, Q iW M, Ca iW Y. Dynam ic properties of E lm an and m odified E lm an neura l netwo rk [ A ]. Pro ceedings o f 2002 Internationa l Conference on M a?? ch ine Learn ing and Cybernetics[ C]. P iscataw ay, N J, USA: IEEE, 2002: 637- 640.
[11] Moham ad F A, H aza N A H, S itiM H S. Augmentation of E lman recurrent network learning w ith partic le swarm optmi ization [ A]. Second Asia Internationa l Conference onMode ling and S mi ulation[ C]. Piscataw ay, NJ, USA: IEEE Computer Society, 2008: 625- 630.

备注/Memo

备注/Memo:
作者简介: 胡健( 1980 - ), 女, 博士, 主要研究方向: 导航、制导与控制, 兵器发射理论与技术, E-mail: hjseu@ sohu. com。
更新日期/Last Update: 2010-06-30