[1]胡程耀,黄培.基于改进GA求解边界移动的非稳态自然对流反问题[J].南京理工大学学报(自然科学版),2011,(01):132-137.
 HU Cheng-yao,HUANG Pei.Inverse Non-steady Natural Convection Problem Including Moving Interface Based on Improved Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2011,(01):132-137.
点击复制

基于改进GA求解边界移动的非稳态自然对流反问题
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2011年01期
页码:
132-137
栏目:
出版日期:
2011-02-28

文章信息/Info

Title:
Inverse Non-steady Natural Convection Problem Including Moving Interface Based on Improved Genetic Algorithm
作者:
胡程耀12黄培12
南京工业大学1. 化学化工学院; 2. 材料化学工程国家重点实验室,江苏南京210009
Author(s):
HU Cheng-yao12HUANG Pei12
1. College of Chemistry and Chemical Engineering,Nanjing University of Technology; 2. State Key Laboratory of Materials-oriented Chemical Engineering,Nanjing 210009,China
关键词:
反问题 参数识别 自然对流传质 遗传算法 边界移动
Keywords:
inverse problems parameter identification natural convective mass transfer genetic algorithm moving interface
分类号:
TQ021. 14
摘要:
为了有效地研究自然对流反问题,给出了基于混合遗传算法求解考虑边界移动的二维 非稳态自然对流传质过程中多参数反问题的一种方法。该方法把参数识别反问题转化为优化 问题后采用混合遗传算法求解。其中正问题的数值解采用有限元法,混合遗传算法采用实数编 码,且在简单遗传算法的基础上引入局部搜索算子改善了该遗传算法的性能。结果表明: 该方 法能有效求解涉及边界移动的自然对流反问题,且具有较高的精度和收敛速度,易于计算机实 现,值得在实际工作中应用。
Abstract:
To effectively study natural convection inverse problems,a new approach based on hybrid genetic algorithm for an inverse non-steady natural convection problem including moving interface is proposed. It transforms the inverse problem of parameter identification into solution of optimization problem using hybrid genetic algorithm. The direct problem is numerically solved by the finite element method. The hybrid genetic algorithm is encoded in real number,and its performance is improved by introducing a local optimization algorithm based on simple genetic algorithm. The numerical simulation results show that the method can effectively solve the inverse natural convection problem including moving interface,mass transfer and flow,and has higher accuracy and quicker convergent speed than the existed methods and is easy to program and calculate.

参考文献/References:

[1] 苏燕兵,陆军,白博峰. 封闭腔内水自然对流换热数 值模拟[J]. 化工学报,2007,58( 11) : 2715-2720.
[2] Roy S,Tanmay B. Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall ( s) [J]. International Journal of Engineering Science,2005,43( 8-9) : 668-680.
[3] 沙勇,林芬芬,叶李艺,等. 吸收过程自然对流非稳 态数值模拟[J]. 化学工程,2006,34( 12) : 5-8.
[4] Tenchev R T,Mackenzie J A,Scanlon T J,et al. Finite element moving mesh analysis of phase change problems with natural convection[J]. International Journal of Heat and Fluid Flow,2005,26 ( 4 ) : 597 -612.
[5] 郭照立,李青,郑楚光. 双扩散自然对流的格子 Boltzmann 模拟[J].计算物理,2002,19( 6) : 483-487.
[6] Colaco M J,Helcio R B O. Inverse natural convection problem of simultaneous estimation of two boundary heat fluxes in irregular cavities[J]. International Journal of Heat and Mass Transfer,2004,47( 6-7) : 1201-1215.
[7] Zhao F Y,Liu D,Tang G F. Numerical determination of boundary heat fluxes in an enclosure dynamically with natural convection through Fletcher-Reeves gradient method[J]. Computers & Fluids,2009,38 ( 4 ) : 797 -809.
[8] Colaco M J,Dulikravich G S. A multilevel hybrid optimization of magnetohydrodynamic problems in double-diffusive fluid flow[J]. Journal of Physics and Chemistry of Solids,2006,67( 9-10) : 1965-1972.
[9] Pourgholi R,Rostamian M. A numerical technique for solving IHCPs using Tikhonov regularization method[J]. Applied Mathematical Modeling,2010,34 ( 8 ) : 2102 -2110.
[10] Wei T,Li Y S. An inverse boundary problem for onedimensional heat equation with a multilayer domain [J]. Engineering Analysis with Boundary Element, 2009,33( 2) : 225-232.
[11] Wang S K,Lee H L,Yang Y C. Inverse problem of estimating time-dependent heat generation in a frictional heated strip and foundation[J]. International Communications in Heat and Mass Transfer,2009,36( 9) : 925-930.
[12] 薛齐文,魏伟,杜秀云. 共轭梯度法求解稳态湿热耦 合多宗量反问题[J]. 大连理工大学学报,2009, 30( 1) : 5-8.
[13] Yang X H,Yang Z F,Yin X N,et al. Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation [J]. Communications in Nonlinear Science and Numerical Simulation,2008,13( 8) : 1676-1688.
[14] 金晶,苏勇. 一种改进的自适应遗传算法[J]. 计算 机工程与应用,2005( 18) : 64-69.
[15] Gan J,Warwick K. Dynamic niche clustering: A fuzzy variable radius niching technique for multimodal optimization in GAS[A]. Proc of the 2001 Congress on Evolutionary Computation[C]. Seoul,South Korea: IEEE,2001: 215-222.
[16] Colaco M L,Dulikravich G S. Solidification of doublediffusive flows using thermo-magneto-hydrodynamics and optimization[J]. Materials and Manufacturing Processes,2007,22( 5-6) : 594-606.
[17] Srinvas M,Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on Systems,Man and Cybernetics,1994,24 ( 4 ) : 656 -667.
[18] Kim K W,Baek S W,Kim M Y,et al. Estimation of emissivities in a two-dimensional irregular geometry by inverse radiation analysis using hybrid genetic algorithm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2004,87( 1) : 1-14.
[19] Bughein C,Haghighat F,Allard F. Numerical study of double-diffusive natural convection in a square cavity [J]. International Journal of Heat and Mass Transfer, 1992,35( 4) : 833-846.

相似文献/References:

[1]张重雄,任继舜.线性系统传递函数的阶数辨识[J].南京理工大学学报(自然科学版),1997,(02):14.
 ZhangChongxiong RenJishun.The Order Discernment of Transfer Function for Linear System[J].Journal of Nanjing University of Science and Technology,1997,(01):14.
[2]王建中.射手-机枪相互作用关系的研究[J].南京理工大学学报(自然科学版),1993,(02):53.

备注/Memo

备注/Memo:
作者简介: 胡程耀( 1982 -) ,男,博士生,主要研究方向: 界面传质现象,化工流体力学,遗传算法,E-mail: huchengyao7890@126. com; 通讯作者: 黄培( 1967-) ,男,教授,博士生导师,主要研究方向: 功能高分子 材料研究与溶液结晶动力学,E-mail: Phuang@ njut. edu. cn。
更新日期/Last Update: 2012-02-28