[1]袁德明,徐胜元,赵环宇,等.分布式多自主体优化问题中的概率量化影响研究[J].南京理工大学学报(自然科学版),2011,(02):209-212.
 YUAN De-ming,XU Sheng-yuan,ZHAO Huan-yu,et al.Effects of Probabilistic Quantization on Distributed Multi-agent Optimization Problem[J].Journal of Nanjing University of Science and Technology,2011,(02):209-212.
点击复制

分布式多自主体优化问题中的概率量化影响研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2011年02期
页码:
209-212
栏目:
出版日期:
2011-04-30

文章信息/Info

Title:
Effects of Probabilistic Quantization on Distributed Multi-agent Optimization Problem
作者:
袁德明徐胜元赵环宇沈浩
南京理工大学自动化学院,江苏南京210094
Author(s):
YUAN De-mingXU Sheng-yuanZHAO Huan-yuSHEN Hao
School of Automation,NUST,Nanjing 210094,China
关键词:
多自主体系统 一致性算法 次梯度方法 概率量化
Keywords:
multi-agent systems consensus algorithms subgradient methods probabilistic quantization
分类号:
O224
摘要:
考虑一个由多个自主体构成的网络,网络中每个自主体拥有一个只有自己知晓的局部目标函数,研究优化所有局部目标函数和的问题。基于一致性算法基本思想并结合次梯度方法解决了固定的网络拓扑结构且自主体之间交换的信息是经过概率量化的分布式多自主体优化问题。得到一个与量化精度和网络连接度有关的关于收敛速率的上界。当步长固定时,该上界可保证网络中的每个自主体的状态值收敛到最优解附近。
Abstract:
This paper studies the problem of optimizing the sum of the individual local convex objective functions which are known to each agent accordingly.Based on the average consensus algorithm,this paper defines a subgradient step to solve this problem when the underlying network topology is fixed and the data transmitted through agents are probabilistically quantized.This paper derives an upper bound which is related to the quantization resolution and the underlying network connectivity on the convergence rate of the proposed method.The proposed algorithm guarantees that each agent’s state value in expectation can converge to the optimal objective value within some error if a fixed step size is used.

参考文献/References:

[1] Xiao L,Boyd S. Fast linear iterations for distributed averaging [J]. Sys and Contr Letters,2004,53 ( 1 ) : 65 - 78.
[2] Ren W,Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies [J]. IEEE Transactions on Automatica Control, 2005, 50( 5) : 655 - 661.
[3] Ren W. Multi-vehicle consensus with a time-varying reference state[J]. Sys and Contr Letters, 2007, 56( 7 - 8) : 474 - 483.
[4] 吴晓蓓,黄成,徐志良. 传感器网络工作效率研究 [J]. 南京理工大学学报( 自然科学版) ,2005,29 ( 1) : 46 - 49.
[5] Nedic A,Ozdaglar A. Distributed subgradient methods for multi-agent optimization[J]. IEEE Transactions on Automatica Control, 2009, 54( 1) : 48 - 61.
[6] Nedic A,Olshevsky A,Ozdaglar A,et al. Distributed subgradient methods and quantization effects[A]. Proceedings of IEEE CDC[C]. Cancun,Mexico: IEEE, 2008: 4177 - 4184.
[7] Aysal T,Coates M,Rabbat M. Distributed average consensus using dithered quantization[J]. IEEE Transactions on Signal Processing,2008,56 ( 10 ) : 4905 - 4918.

备注/Memo

备注/Memo:
基金项目:教育部高等学校博士学科点专项科研基金( 20060288021) 作者简介:袁德明( 1985 - ) ,男,博士生,主要研究方向: 一致性算法,凸优化,E-mail: demingyuan@ yahoo. com; 通 讯作者: 徐胜元( 1968 - ) ,男,教授,博士生导师,主要研究方向: 广义系统,时滞系统和鲁棒控制,Email: syxu02@ yahoo. com. cn。
更新日期/Last Update: 2012-04-30