[1]黄俊,徐越兰.E4303焊条力学性能模糊神经网络智能预测[J].南京理工大学学报(自然科学版),2011,(02):218-223.
 HUANG Jun,XU Yue-lan.Intelligent Prediction of E4303 Electrode Mechanical Properties Based on Fuzzy Neural Network[J].Journal of Nanjing University of Science and Technology,2011,(02):218-223.
点击复制

E4303焊条力学性能模糊神经网络智能预测
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2011年02期
页码:
218-223
栏目:
出版日期:
2011-04-30

文章信息/Info

Title:
Intelligent Prediction of E4303 Electrode Mechanical Properties Based on Fuzzy Neural Network
作者:
黄俊徐越兰
南京理工大学材料科学与工程学院,江苏南京210094
Author(s):
HUANG JunXU Yue-lan
School of Materials Science and Engineering,NUST,Nanjing 210094,China
关键词:
碳钢焊条 模糊神经网络 力学性能 智能预测
Keywords:
carbon steel electrodes fuzzy neural network mechanical properties intelligent prediction
分类号:
TG422.1;TP183
摘要:
为了获得反映焊条原材料成分与其熔敷金属力学性能之间映射关系的预测模型,该文对E4303碳钢焊条进行配方设计和堆焊试验,测定其熔敷金属的抗拉强度、屈服强度、延伸率、冲击功4项力学性能指标。采用自适应模糊神经网络方法建立了直接由焊条原材料成分预测焊条力学性能的模糊神经网络模型。用该模糊神经网络模型对训练样本以外的试验数据进行预测。结果表明,抗拉强度和屈服强度的预测平均相对误差在5%以内,延伸率指标预测平均绝对误差仅为0.021,冲击功指标预测效果与BP网络相比有明显改善,说明该模糊神经网络预测模型能够直接根据焊条原材料成分较准确地预测其熔敷金属的力学性能。
Abstract:
To acquire a prediction model reflecting the relationship between primary materials formula and the deposited metal mechanical properties of electrodes,formula design and resurfacing welding experiments are made on E4303 carbon steel electrode.Mechanical properties indexes of deposited metal including tensile strength,yield strength,elongation percentage,impacting works are also measured.Using the method of adaptive fuzzy neural network,a model for predicting electrode mechanical properties directly from primary material components is built.The model is used to predict the experiment data except training samples.Results show that the prediction average relative errors of tensile strength and yield strength are all below 5%,the prediction average absolute error of elongation percentage is only 0.021,the predicting effect of impacting works is improved compared with that using the BP network.This fuzzy neural network prediction model can accurately predict the deposited metal mechanical properties directly from primary material components.

参考文献/References:

[1] Carlson N A. Federated filter for fault-tolerant integrated navigation systems[A]. Proceedings of Position Location and Navigation System’88[C]. Orlando: IEEE, 1988: 110 -119.
[2] Carlson N A. Federated square root filter for decentra-lized parallel processes[J]. IEEE Trans on Aerospace and Electric, 1990, 26( 3) : 517 -525.
[3] Carlson N A. Federated Kalman filter simulation results [J]. Navigation, 1994 41( 3) : 297 -321.
[4] 陶俊勇,邱静,温熙森,等. 自适应联合滤波模型及 其在车载SINS /GPS 组合导航系统中的应用[J]. 信 息与控制, 2000, 29( 2) : 168 - 172.
[5] 李夜华,房建成. 一种多模型自适应联邦滤波器及 其在INS /CNS /GPS 组合导航系统中的应用[J]. 航 天控制, 2003, 21( 2) : 33 - 38.
[6] Jamshaid Ali,Fang Jiancheng. SINS/ANS/GPS integration using federated Kalman filter based on optimized information- sharing coefficients[A]. AIAA Guidance,Navigation, and Control Conf[C]. Reston,VA,USA: AIAA, 2005: 6028 -6040.
[7] 吴训忠,周军,邱恺. 基于故障因子函数的鲁棒联邦 滤波算法研究[J]. 宇航学报, 2006, 27( 1) : 57 - 60.
[8] 李金梁,吴训忠,张宗麟. 基于矩阵摄动理论的联邦 滤波信息分配方法[J]. 系统工程与电子技术, 2007, 29( 11) : 1940 - 1944.
[9] 胡志强,张瑛,邱恺. 基于故障概率的联邦滤波鲁棒 信息分配方法[J]. 系统工程与电子技术, 2008,30 ( 9) : 1801 - 1804.
[10] Shortelle K J,Graham W R,Rabourn C. F-16 Flight tests of a rapid transfer alignment procedure[A]. IEEE Position Location and Navigation Symposium[C]. Piscataway, NJ,USA: IEEE, 1998: 379 - 386.
[11] Joon Lyou,Lim You-Chol. Transfer alignment error compensator design based on robust state estimation[A]. Transactions of the Japan Society for Aeronautical and Space Sciences[C]. Tokyo,Japan: Society for Aeronautical and Space Sciences, 2005: 143 - 151.
[12] 程向红,万德钧. 分布式系统中捷联惯性系统动基 座对准研究[J]. 中国惯性技术学报2004, 12( 6) : 8 - 12.
[13] Gu Dong-qing,Qin Yong-yuan,Peng Rong, et al. Rapid transfer alignment using federated kalman filter[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2005, 22( 2) : 139 - 143

相似文献/References:

[1]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(02):800.
[2]王 力,钱林方,高 强,等.随动系统负载模拟器执行环节的建模研究[J].南京理工大学学报(自然科学版),2013,37(04):579.
 Wang Li,Qian Lingfang,Gao Qiang,et al.Modeling of actuator in load simulator for servo systems[J].Journal of Nanjing University of Science and Technology,2013,37(02):579.

备注/Memo

备注/Memo:
作者简介:黄俊( 1978 - ) ,女,博士,讲师,主要研究方向: 气动及机电一体化技术、焊接材料智能化设计、焊接过 程数值模拟,E-mail: huangjun0061@126. com。
更新日期/Last Update: 2012-04-30