[1]柏磊,顾陈,严璐,等.基于适应度评价扩展自适应遗传算法的门级电路进化设计[J].南京理工大学学报(自然科学版),2011,(02):240-244.
 BAI Lei,GU Chen,YAN Lu,et al.Evolutionary Design of Gate-level Circuits Based on Fitness Evaluation Expansion Adaptive Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2011,(02):240-244.
点击复制

基于适应度评价扩展自适应遗传算法的门级电路进化设计
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2011年02期
页码:
240-244
栏目:
出版日期:
2011-04-30

文章信息/Info

Title:
Evolutionary Design of Gate-level Circuits Based on Fitness Evaluation Expansion Adaptive Genetic Algorithm
作者:
柏磊1顾陈1严璐2朱晓华1
1. 南京理工大学电子工程与光电技术学院,江苏南京210094; 2. 南京莱斯信息技术股份有限公司智能交通事业部,江苏南京210007
Author(s):
BAI Lei1GU Chen1YAN Lu2ZHU Xiao-hua1
1.School of Electronic Engineering and Optoelectronic Technology,NUST,Nanjing 210094,China;2.IntelligentTransport System Division,Nanjing LES Information Technology Limited Company,Nanjing 210007,China
关键词:
电路进化设计 适应度评价扩展 门级电路 自适应遗传算法 可进化硬件
Keywords:
evolutionary design of circuits fitness evaluation expansion gate-level circuits adaptive genetic algorithm evolvable hardware
分类号:
TP18
摘要:
针对遗传算法适应度评价阶段指定输出单元容易丢失潜在解的问题,该文提出了一种基于适应度评价扩展的电路进化设计方法。该方法将每个逻辑单元的输出都视为一个潜在的解处理,得到一个最优适应度评价值,避免了潜在解的丢失,有效地提高了自适应遗传算法的性能。通过多种电路的进化设计实验比较了该文方法与传统自适应遗传算法设计的性能,结果表明,该文方法具有收敛速度快、迭代次数少、获得最优解成功概率高的优点。
Abstract:
To solve the problem of losing potential solution in specifying output cells at fitness evaluation stage of genetic algorithm,a new method based on fitness evaluation expansion adaptive genetic algorithm is proposed here.The method takes the output of every single cell in the evolved array as a potential solution,obtaining a best fitness evaluation value.The proposed method enhances the performance of adaptive genetic algorithm due to avoiding the loss of potential solution.Compared with the conventional algorithm in evolutionary design of circuits,the proposed method has advantages of faster convergence,less iteration and higher probability of obtaining desired solution.

参考文献/References:

[1] Yao X,Higuichi T. Promises and challenges of evolvable hardware[J]. IEEE Trans on Systems,Man and Cybernetics - Part C: Applications and Reviews,2005, 14( 3) : 549 - 553.
[2] Thompson A,Layzell P,Zebulum R S. Explorations in design space: Unconventional electronics design through artificial evolution[J]. IEEE Trans on Evolutionary Computation, 1999,3 ( 3) : 167 -196.
[3] Coello C A,Christiansen A D. Use of evolutionary techniques to automate the design of combinational circuits [J]. International Journal of Smart Engineering System Design, 2000,2 ( 4) : 299 - 314.
[4] 王小平,曹立民. 遗传算法: 理论、应用与软件实现 [M]. 西安: 西安交通大学出版社,2002.
[5] Zhao S G,Yang W H. Intrinsic hardware evolution based on a prototype of function level FPGA[J]. Chinese Journal of Computers, 2002, 25( 6) : 666 - 669.
[6] Miller J F, Job D,Vassilev V K. Principles in the evolutionary design of digital circuits—Part 1[J]. Genetic Programming and Evolvable Machines, 2000,1 ( 1) : 8 -35.
[7] 赵曙光,刘贵喜,王军宁,等. 基于自适应遗传算法 的模拟电路自动设计方法[J]. 电子学报,2004,32 ( 4) : 680 - 683.
[8] Stomeo E,Kalganova T,Lambert C. Generalisec disjunction decomposition for evolvable hardware[J]. IEEE Trans on Systems,Man and Cybernetics - Part C: Applications and Reviews, 2006, 36( 5) :1024 -1043.
[9] Miller J F,Smith S L. Redundancy and computational efficiency in cartesian genetic programming[J]. IEEE Trans on Evolutionary Computation,2006,10( 2) : 167 - 174. 244

备注/Memo

备注/Memo:
作者简介:柏磊( 1983 - ) ,男,博士生,主要研究方向: 演化硬件、电路进化设计,E-mail: jackybai1983@ hotmail. com; 通讯作者: 朱晓华( 1964 - ) ,男,教授,博士生导师,主要研究方向: 雷达系统理论与技术、高速实 时数字信号处理,E-mail: zxh@ mail. njust. edu. cn。
更新日期/Last Update: 2012-04-30