[1]花文华,陈兴林.具有碰撞角度约束的微分对策制导律[J].南京理工大学学报(自然科学版),2011,(03):309-315.
 HUA Wen-hua,CHEN Xing-lin.Differential Game Guidance Law with Impact Angle Constraint[J].Journal of Nanjing University of Science and Technology,2011,(03):309-315.
点击复制

具有碰撞角度约束的微分对策制导律
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2011年03期
页码:
309-315
栏目:
出版日期:
2011-06-30

文章信息/Info

Title:
Differential Game Guidance Law with Impact Angle Constraint
作者:
花文华;陈兴林;
哈尔滨工业大学航天学院,黑龙江哈尔滨150001
Author(s):
HUA Wen-huaCHEN Xing-lin
School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
关键词:
制导律 微分对策 碰撞角约束 终端投影变换
Keywords:
guidance laws differential games impact angle constraints terminal projection transformation
分类号:
TJ765
摘要:
为改善拦截导弹战斗部毁伤威力,针对其碰撞角度约束问题进行了研究。采用终端投影变换进行系统降阶,并基于线性二次型性能指标,推导了一种考虑碰撞角度约束的微分对策制导律。对其制导增益、鞍点解的存在条件和理想拦截性能进行了研究。制导律的推导基于最坏目标机动情形,不受限于具体的目标机动形式,尤其适用于目标机动无法预测的拦截情形。非线性系统仿真表明当拦截导弹具有足够的机动性能时,即使目标机动或存在一定的指向误差,该制导律的脱靶量和碰撞角误差仍约为0。
Abstract:
To improve the interceptor ’ s warhead lethality,the impact angle constraint of the interceptor is researched.Terminal projection transformation is used to reduce the problem ’ s order and a differential game guidance law with impact angle constraint is derived based on a linear quadratic cost function.The guidance gains,the existence of a saddle point solution and the performance of perfect interception are researched.The derivation of this guidance law considers the worst-case target maneuver,so it is not limited to the specific target maneuver and is much appropriate when the target maneuver is unpredictable.Nonlinear system simulations are carried out.The results show that with enough maneuver capability of the interceptor,the miss distance and impact angle error of this guidance law are about 0 even if the scenario is initiated with some heading errors and the target performs a maneuver.

参考文献/References:

[1] Ryoo C K,Cho H,Tahk M J. Closed-form solutions of optimal guidance with terminal impact angle constraint[A]. Proceedings of the IEEE Conference on Control Applications [C]. New York,USA: IEEE, 2003: 504 -509.
[2] Ryoo C K,Cho H,Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control and Dynamics, 2005, 28( 4) : 724 -732.
[3] Ryoo C K,Cho H,Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control System Technology,2006,14 ( 3) : 483 - 492.
[4] Song T L, Shin S J,Cho H. Impact angle control for planer engagements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35( 4) : 1439 -1444.
[5] Ratnoo A,Ghose D. State-dependent Riccati-equationbased guidance law for impact-angle-constrained trajectories [J]. Journal of Guidance,Control and Dynamics, 2009, 32( 1) : 320 - 325.
[6] Bryson E A,Ho C Y. Applied optimal control[M]. Waltham,USA: Blaisdell, 1969: 154 -155, 271 -295.
[7] 马礼举,魏志鹏. 基于目标姿态信息的导弹微分对 策制导律研究[J]. 弹箭与制导学报,2009,29( 3) : 43 - 46.
[8] 苏晓丹. 飞行器姿态控制系统综合的一种微分对策 方法[J]. 航天控制, 2009, 27( 3) : 72 - 75.
[9] 王长青,史晓丽,王新民,等. 基于LQ 微分对策的最 优规避策略与决策算法[J]. 计算机仿真,2008,25 ( 9) : 74 - 78.
[10] 李登峰,罗飞. 舰艇编队信息战火力分配微分对策 模型及求解[J]. 控制理论与应用,2008,25 ( 6) : 1163 - 1166.
[11] Anderson G M. Comparison of optimal control and differential game Intercept guidance laws[J]. Journal of Guidance and Control, 1981,4 ( 2) : 109 - 115.
[12] Shima T,Golan O M. Linear quadratic differential games guidance law for dual controlled missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43( 3) : 834 - 842.
[13] Shinar J,Steinberg D. Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model[J]. Journal of Aircraft, 1977, 14( 8) : 795 - 802. 315

备注/Memo

备注/Memo:
基金项目:黑龙江省科技攻关计划( GZ06A104) 作者简介:花文华( 1983 - ) ,男,博士生,主要研究方向: 飞行器制导,E-mail: huawh6611@ 163. com; 通讯作者: 陈 兴林( 1963 - ) ,男,博士,教授,博士生导师,主要研究方向: 飞行器制导、精密伺服控制等,E-mail: chenxl@ hit. edu. cn。
更新日期/Last Update: 2012-06-30