[1]王兴梅,印桂生,门志国,等.动态场景中自适应去除外点的全局运动估计方法[J].南京理工大学学报(自然科学版),2011,(04):442-447.
 WANG Xing-mei,YIN Gui-sheng,MEN Zhi-guo,et al.Global Motion Estimation Method with Adaptive Outliers Elimination in Dynamic Scene[J].Journal of Nanjing University of Science and Technology,2011,(04):442-447.
点击复制

动态场景中自适应去除外点的全局运动估计方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2011年04期
页码:
442-447
栏目:
出版日期:
2011-08-31

文章信息/Info

Title:
Global Motion Estimation Method with Adaptive Outliers Elimination in Dynamic Scene
作者:
王兴梅1印桂生1门志国2仇晨光3
哈尔滨工程大学1. 计算机科学与技术学院; 2. 自动化学院,黑龙江哈尔滨150001; 3. 中国兵器工业集团第二一四研究所苏州研发中心,江苏苏州215163
Author(s):
WANG Xing-mei1YIN Gui-sheng1MEN Zhi-guo2QIU Chen-guang3
1. College of Computer Science and Technology; 2. College of Automation, Harbin Engineering University,Harbin 150001,China; 3. Suzhou Research Centre,East China Research Institute of Photo-electronic,Suzhou 215163,China
关键词:
动态场景 匹配 特征点 全局运动估计 外点
Keywords:
dynamic scenes matching feature points global motion estimation outliers
分类号:
TN919. 8
摘要:
为在动态场景图像序列中准确地完成全局运动估计,提出一种自适应去除外点的全局 运动估计方法。对尺度不变特征变换( Scale invariant feature transform,SIFT) 算法提取出的特征 点利用最近邻搜索算法中的BBF( Best Bin First) 方法进行匹配。为提高全局运动估计的精度, 提出改进的随机抽样一致( RANdom SAmple Consensus,RANSAC) 算法。此算法能够自适应地 去除外点,即利用特征点运动矢量的方差控制迭代次数来进行外点的去除,最终通过摄像机运 动模型实现准确的运动参数估计和背景补偿。对标准图像序列Coastguard 和实际拍摄的动态 场景图像序列的实验表明,提出的方法能够快速地完成动态场景中的全局运动估计与补偿,具 有较高的精度和适应性。
Abstract:
To exactly obtain global motion estimation in dynamic scene, this paper presents an adaptive global motion estimation method to eliminate outliers. The Best Bin First( BBF) method of the nearest neighbor search algorithm is used to match feature points extracted by the scale invariant feature transform( SIFT) algorithm. In order to improve the accuracy of feature matching,an improved RANdom SAmple Consensus ( RANSAC ) algorithm is proposed that can eliminate outliers adaptively. The iterative number is controlled by the variance of motion magnitude of feature points. Through a camera motion model,accurate results of parameter estimation and background compensation are obtained. The proposed algorithm is tested by the Coastguard standard image sequence and the practical one with dynamic scenes. The experimental results are compared with the previous method,which demonstrates that the proposed algorithm is highly accurate and adaptive and that the speed is faster.

参考文献/References:

[1] Ross D A,Lim J,Lin R S,et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77( 1-3) : 125-141.
[2] Chum O,Matas J,Obdrzalek S. Enhancing RANSAC by generalized model optimization[A]. Proceedings of the Asian Conference on Computer Vision ( ACCV) [C]. Seoul,South Korea: Asian Federation of Computer Vision Societies, 2004: 812-817.
[3] 陈付幸,王润生. 基于预检验的快速随机抽样一致 性算法[J]. 软件学报, 2005, 16 ( 8) : 1431-1437.
[4] Nister D. Preemptive RANSAC for live structure and motion estimation [ J ]. Machine Vision and Applications, 2005, 16( 5) : 321-329.
[5] Capel D. An effective bail-out test for RANSAC consensus scoring[A]. Proceedings of the British Machine Vision Conference [C]. Britannia,Britain: Oxford, 2005: 1-10.
[6] 田文,王宏远,徐帆,等. RANSAC 算法的自适应Tc, d 预检验[J]. 中国图象图形学报, 2009, 14 ( 5) : 973 -977.
[7] 卓志敏,杨莘元,杨雷. 基于RANSAC+LS 算法的红 外成像全局运动估计[J]. 兵工学报, 2008, 29 ( 3) : 308-312.
[8] Ondrej C,Jirf M. Optimal randomized RANSAC[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30( 8) : 1472-1482.
[9] Tang Chengyuan,Wu Yileh,Hor M,et al. Modified SIFT description for image matching under interfereence [A]. Proceedings of the Seventh International Conference on Machine Learning and Cybernetics[C]. Kunming,China: IEEE Computer Society,2008: 3294 -3300.
[10] Guo Shuxiang,Qiu Chenguang,Ye Xiufen. A kind of global motion estimation algorithm based on feature matching[A]. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation [C]. Changchun,China: IEEE Computer Society, 2009: 107-111.

相似文献/References:

[1]隋修宝,陈钱,顾国华,等.扫描型热像仪扫描匹配技术[J].南京理工大学学报(自然科学版),2008,(04):492.
 SUI Xiu-bao,CHEN Qian,GU Guo-hua.Scan Matching Technology of Scanning Thermal Imager[J].Journal of Nanjing University of Science and Technology,2008,(04):492.
[2]钱晓峰,阎伟.基于形状特征划分的树状区域匹配图像检索[J].南京理工大学学报(自然科学版),2001,(01):48.
 QianXiaofeng YanWei.Regions with Tree Relationships Segmented on Shape Features Matching for Image Retrieval[J].Journal of Nanjing University of Science and Technology,2001,(04):48.
[3]丁震,胡钟山,唐振民,等.从二维图象中恢复距离信息的体视匹配方法[J].南京理工大学学报(自然科学版),1996,(05):69.
 Ding Zhen Hu Zhongshan Tang Zhenmin Yang Jingyu.A Stereo Correspondence Approach of Recovering Range Information from 2D Images[J].Journal of Nanjing University of Science and Technology,1996,(04):69.

备注/Memo

备注/Memo:
基金项目: 中央高校基本科研业务费专项资金资助项目( HEUCF100605,HEUCFR1121) ; 黑龙江省博士后资助项 目( 3236310003) 作者简介: 王兴梅( 1978-) ,女,博士后,主要研究方向: 图像处理,E-mail: wangxingmei@ hrbeu. edu. cn。
更新日期/Last Update: 2012-10-23