[1]王轶卿,李胜,陈庆伟,等.基于无扰切换的非完整系统有限时间镇定控制[J].南京理工大学学报(自然科学版),2012,36(01):18-24.
 WANG Yi-qing,LI Sheng,CHEN Qing-wei,et al.Finite-time Stabilization Control for Nonholonomic Chained System Based on Switching Control Without Disturbances[J].Journal of Nanjing University of Science and Technology,2012,36(01):18-24.
点击复制

基于无扰切换的非完整系统有限时间镇定控制
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年01期
页码:
18-24
栏目:
出版日期:
2012-02-29

文章信息/Info

Title:
Finite-time Stabilization Control for Nonholonomic Chained System Based on Switching Control Without Disturbances
作者:
王轶卿; 李胜; 陈庆伟; 侯保林;
南京理工大学自动化学院;
Author(s):
WANG Yi-qingLI ShengCHEN Qing-weiHOU Bao-lin
School of Automation,NUST,Nanjing 210094,China
关键词:
非线性控制 有限时间控制 非完整链式系统 齐次系统方法 终端滑模控制
Keywords:
nonlinear control finite-time control nonholonomic chained systems homogenous system methods terminal sliding mode control
分类号:
TP13
摘要:
为了使一类非完整系统各状态能够更快收敛至平衡状态,该文对此类系统的有限时间镇定问题进行了研究。该文分别应用齐次系统方法和终端滑模控制理论,结合无扰切换策略,提出了两种有限时间镇定控制器,并给出了相应的控制器参数选择条件。所设计控制器能够根据非完整链式系统各状态的变化,使得系统状态在有限时间内收敛至平衡位置,且有效解决了原有非完整链式系统切换控制中的扰动问题。仿真结果表明,所设计的两种有限时间镇定控制器能够使三维非完整链式系统各状态在有限时间内收敛至平衡位置,并且控制输入在整个控制过程中连续变化。
Abstract:
In order to make every state converge to the equilibrium,the finite-time stabilization control for the nonholonomic chained system is studied here.Combining with non-disturbances switch control strategy,two kinds of finite-time stabilization controllers are proposed utilizing the homogenous system methods and terminal sliding mode control theory respectively.The selection conditions of the controller ’ s parameters are given.The proposed controllers can make every state of the nonholonomic chained system converge from the initial state to the equilibrium in finite time according to the change of the states and solve the disturbance problem of the nonholonomic chained system under the existing switch controller.The simulation results show that the proposed finite-time stabilization controllers can make every state of a 3-dimentional nonholonomic chained system converge to the equilibrium in finite time,and the control input changes continually in the whole process.

参考文献/References:

[1] 李世华,丁世宏,田玉平. 一类二阶非线性系统的有限时间状态反馈镇定方法[J]. 自动化学报,2007, 33( 1) : 101-103.
[2] Bhat S P,Bernstein D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control,Signals, and Systems, 2005, 17( 2) : 101-127.
[3] Bhat S P,Bernstein D S. Finite-time stability of contin-uous autonomous systems[J]. SIAM Journal of Control and Optimization, 2000, 38( 3) : 751-766.[4] Bhat S P,Bernstein D S. Lyapunov analysis of finitetime differential equations [A]. Proceedings of American Control Conference[C]. Washington DC, USA: IEEE, 1995: 1831-1832.
[5] Hong Yiguang. Finite-time stabilization and stabilizability of a class of controllable systems[J]. Systems and Control Letters, 2002, 46( 2) : 231-236.
[6] Hong Yiguang,Yang Guowu,Cheng Daizhan,et al. Finite time convergent control using terminal sliding mode[J]. Journal of Control Theory and Applications, 2004,2 ( 1) : 69-74.
[7] Hong Yiguang,Yang Guowu,Cheng Daizhan,et al. A new approach to terminal sliding mode control design [J]. Asian Journal of Control, 2005,7 ( 2) : 177-181.
[8] Feng Yong,Yu Xinghuo,Man Zhihong. Nonsingular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38: 2159-2167.
[9] Nersesov S G ,Haddad W M. Finite-time stabilization of nonlinear dynamical systems via control vector Lyapunov functions [J]. Journal of Franklin Institute, 2008, 345: 819-837.
[10] Hong Yiguang,Xu Yangsheng,Huang Jie. Finite-time control for robot manipulators[J]. Systems and Control Letters, 2002, 46: 243-253.
[11] 祝晓才,董国华,胡德文. 轮式移动机器人有限时间镇定控制器设计[J]. 国防科技大学学报,2006, 28( 4) : 121-127.
[12] Jammazi C. Finite-time partial stabilizability of chained systems[J]. Comptes Rendus Mathematique,2008, 346( 17 /18) : 975-980.
[13] Brockett R W. Differential geometric control theory[M]. Boston,USA: Burkhauser, 1983: 181-191.
[14] Astolfi A. On the stabilization of nonholonomic systems [A]. Proceedings of the 33rd IEEE Conference on Decision and Control[C]. Florida,USA: IEEE,1994: 3481-3486.
[15] Tayebi A,Tadjine M,Rachid A. Invariant manifold approach for the stabilization of nonholonomic systems in chained form: Application to a car-like mobile robot [A]. Proceedings of the 36th IEEE Conference on Decision and Control[C]. California,USA: IEEE,1997: 4038-4043.
[16] 李胜,陈庆伟,胡维礼. 不变流形在非完整链式系统镇定中的应用[J]. 南京理工大学学报, 2005, 29( 5) : 505-509.
[17] 马保离,霍伟. 非完整链式系统的时变光滑指数镇定[J]. 自动化学报, 2003, 29( 2) : 301-305.
[18] Matsune I,Zhai G S,Tomoaki K, et al. A study on hybrid control of nonholonomic systems[A]. International Conference on Instrumentation,Control and Information Technology [C]. Okayama,Japan: The Society of Instrument and Control Engineers, 2005: 211-214.

相似文献/References:

[1]朱志浩,郭 毓,陈庆伟.多模态充液挠性航天器有限时间控制[J].南京理工大学学报(自然科学版),2020,44(02):134.[doi:10.14177/j.cnki.32-1397n.2020.44.02.002]
 Zhu Zhihao,Guo Yu,Chen Qingwei.Finite-time control for multiple model liquid-filled flexible spacecraft[J].Journal of Nanjing University of Science and Technology,2020,44(01):134.[doi:10.14177/j.cnki.32-1397n.2020.44.02.002]

备注/Memo

备注/Memo:
国家自然科学基金(60975075,51175266,61074023)
更新日期/Last Update: 2012-10-12