[1]巴志新,张振忠,戴玉明,等.热压烧结块体纳米晶镍的微观组织及力学性能[J].南京理工大学学报(自然科学版),2012,36(01):152-157.
 BA Zhi-xin,ZHANG Zhen-zhong,DAI Yu-ming,et al.Microstructures and Mechanical Properties of Hot-press Sintered Bulk Nanocrystalline Nickel[J].Journal of Nanjing University of Science and Technology,2012,36(01):152-157.
点击复制

热压烧结块体纳米晶镍的微观组织及力学性能
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年01期
页码:
152-157
栏目:
出版日期:
2012-02-29

文章信息/Info

Title:
Microstructures and Mechanical Properties of Hot-press Sintered Bulk Nanocrystalline Nickel
作者:
巴志新; 张振忠; 戴玉明; 周剑秋; 张少明;
南京工程学院材料工程学院; 南京工业大学材料科学与工程学院;
Author(s):
BA Zhi-xin12ZHANG Zhen-zhong1DAI Yu-ming2 ZHOU Jian-qiu1ZHANG Shao-ming1
1.Department of Material Engineering,Nanjing Institute of Technology,Nanjing 211167,China; 2.College of Material Science and Engineering,Nanjing University of Technology,Nanjing 210009,China
关键词:
块体纳米晶镍 热压烧结 微观组织 力学性能
Keywords:
bulk nanocrystalline nickels hot-press sintering microstructures mechanical property
分类号:
TB383.1O614.813
摘要:
为了探索工程实用的块体纳米晶镍制备技术,采用直流电弧等离子体蒸发+热压烧结法在较低的温度下制得了块体纳米晶镍。通过X射线衍射分析仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)和阿基米德法等手段研究了纳米晶镍的结构、形貌和孔隙率,并采用数字图像相关法(DIC)分析其室温压缩性能。结果表明,在2.5 GPa、500℃下烧结制得晶粒尺寸为62.1 nm的块体纳米晶镍,其相对致密度为95.8%,最大抗压断裂强度达到905 MPa,断裂伸长率为11.5%,压缩过程中无明显屈服现象。较差的塑性主要归因于微孔隙的存在和较窄的晶粒尺寸分布。
Abstract:
In order to explore the practical preparation method of bulk nanocrystalline nickels,direct current arc plasma evaporation method and hot-press sintering are used to prepare the bulk nanocrysta-lline nickels under lower temperatures.The crystal structures,surface micrographs and porosities of nickels are studied by employing the X-ray diffraction(XRD),transmission electron microscope(TEM),scanning electron microscope(SEM)and Archimedes method.The compressive properties of the specimens at ambient temperature are also investigated by using the digital image correlation method(DIC).The results show that the bulk nanocrystalline nickel with an average grain size of 62.1 nm can be prepared by sintering under 2.5 GPa and 500 ℃.This sample has a relative density of 95.8%,an ultimate tensile strength of 905 MPa,an elongation to failure of 11.5% and no obvious yield.However,its plasticity decreases due to narrow grain size distribution and the holes in the bulk nanocrystalline nickels.

参考文献/References:

[1] Gleiter H. Nanocrystalline materials[J]. Progress in Materials Science, 1989, 33( 4) : 223-315.
[2] Kang Jinxing,Zhao Wenzhen,Zhang Gaofeng. Influence of electrodeposition parameters on the deposition rate and microhardness of nanocrystalline Ni coatings[J]. Surface and Coatings of Technology,2009,203 ( 13) : 1815-1818.
[3] Yang Bin,Fan Jiangzhong,Hao Bin,et al. Synthesis and characterization of nanocrystalline Ni produced by cryomilling in liquid nitrogen[J]. Rare Metal,2007, 26( 2) : 147-151.
[4] Krasnowski M,Antolak A,Kulik T. Nanocrystalline Ni3Al alloy produced by mechanical alloying of nickel aluminides and hot-pressing consolidation[J]. Journal of Alloys and Compounds, 2007, 434-435( 5) : 344-347.
[5] 路承杰. 块体纳米晶镍的制备及性能研究[D]. 南京: 南京工业大学材料科学与工程学院, 2007.
[6] 刘东亮,金永中,栾道成. 压力对块体纳米镍热稳定 156性研究[J]. 机械工程材料, 2005, 29( 10) : 54-55.
[7] Zhu Rongtao,Zhou Jianqiu,Li Xinbo, et al. Investigation of shear-banding mechanism in fully dense nanocrystalline Ni sheet[J]. Materials Characterization,2010, 61( 4) : 396-401.
[8] Isonishi K,Okazaki K. Grain growth and its kinetics of nanophase niobium aluminide produced by mechanical alloying [J]. Materials Transactions, 1993, 34( 1) : 49-53.
[9] 刘海涛,杨郦,张树军,等. 无机材料合成[M]. 北京: 化学工业出版社, 2003.
[10] James C,William E M,Bernard H K,et a1. Dense nanoscale single and multiphase ceramic sintered by transformation assisted consolidation[J]. The International Journal of Powder Metallurgy,2001,37 ( 1 ) : 45-54.
[11] Dalla Torre F,Sptig P,Schublin R, et al. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel[J]. Acta Materialia, 2005, 53( 8) : 2337-2349.
[12] Ma E. Materials science: Watching the nanograins roll [J]. Science, 2004, 305( 5684) : 623-624.
[13] Koch C C,Morris D G,Lu K,et al. Ductility of nanostructured materials[J]. MRS Bulletin,1999,24 ( 2) : 54-58.
[14] Zhu Yuntian,Liao Xiaozhou. Nanostructured metals: Retaining ductility [J]. Nanostructured Materials, 2004,3 ( 6) : 351-352.
[15] Koch C C. Ductility in nanostructured and ultra finegrained materials: Recent evidence for optimism[J]. Journal of Metastable Nanocrystalline Materials, 2003, 18( 8) : 9-20.
[16] Weertman J R,Farkas D,Kung H, et al. Structure and mechanical behavior of bulk nanocrystalline material [J]. MRS Bulletin, 1999, 24( 2) : 24-44.[17] Wang Y M,Cheng S,Wei Q M, et al. Effect of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni [J]. Scripta Materialia,2004, 51( 11) : 1023-1028.
[18] 许伟长,戴品强. 电沉积微纳米镍的组织结构与力学性能[J]. 中国有色金属学报, 2009, 19( 10) : 1815-1821.

备注/Memo

备注/Memo:
国家自然科学基金(10502025,10872087);南京工程学院青年基金(QKJA2009003)
更新日期/Last Update: 2012-10-12