[1]骞朋波,尹晓春,沈煜年,等.简支梁弹塑性碰撞响应动态子结构方法[J].南京理工大学学报(自然科学版),2012,36(01):176-181.
 QIAN Peng-bo,YIN Xiao-chun,SHEN Yu-nian,et al.Dynamic Substructure Technique for Elastic-plastic Impact Responses of Simply Supported Beam[J].Journal of Nanjing University of Science and Technology,2012,36(01):176-181.
点击复制

简支梁弹塑性碰撞响应动态子结构方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年01期
页码:
176-181
栏目:
出版日期:
2012-02-29

文章信息/Info

Title:
Dynamic Substructure Technique for Elastic-plastic Impact Responses of Simply Supported Beam
作者:
骞朋波; 尹晓春; 沈煜年; 杨钧; 孔德平;
南京理工大学理学院;
Author(s):
QIAN Peng-boYIN Xiao-chunSHEN Yu-nianYANG JunKONG De-ping
School of Sciences,NUST,Nanjing 210094,China
关键词:
动态子结构 碰撞 弹塑性动力学
Keywords:
dynamic substructures beams impacts elastic-plastic dynamics
分类号:
O344.3
摘要:
针对简支梁结构弹塑性碰撞响应问题,建立了碰撞子结构模型。基于弹塑性有限元理论和模态综合方法推导出了该碰撞子结构模型在模态坐标下的动力学控制方程,将动态子结构方法推广应用于柔性梁结构的弹塑性碰撞响应研究。采用接触模型考虑碰撞位置局部变形,数值计算表明,该方法可以计算复杂变化的弹塑性碰撞接触力响应,梁上二维动态弹塑性应力场,动态位移场,角位移场和横向振动速度场等动力学变量,还可以描述碰撞激发弹塑性波的传播和塑性铰形成过程这类复杂的瞬态动力学现象。通过对比计算得到的碰撞接触力响应,弹塑性波传播特征和塑性铰形成过程与有限元计算结果和塑性动力学理论,证明了该动态子结构方法研究柔性梁结构弹塑性碰撞动力响应问题的有效性和合理性。
Abstract:
For the elastic-plastic impact response of a simply supported beam,an impact substructure model is built and its governing equations in modal coordinates are derived from the finite element theory and modal synthesis method.A dynamic substructure technique is presented and applied to solve the elastic-plastic impact response.By considering the local elastic-plastic contact deformation,some dynamical variables,such as the complicated history of contact force,the elastic-plastic stress distribution,the displacement field,the angular displacement field and the transverse velocity field of the beam are calculated.The transient dynamics phenomena are also displayed,including the propagations of elastic-plastic waves and the formations of plastic hinges.The comparison with those of the finite element method and the plastic hinges theory shows that the dynamic substructure technique here is effective and valid for elastic-plastic impact responses of flexible beams.

参考文献/References:

[1] Chang Chialung,Yang Shaohuei. Simulation of wheel impact test using finite element method [J ]. Engineering Failure Analysis, 2009, 16: 1711-1719.[2] Kaiming B,Hong H,Nawawi C. Required separation distance between decks and at abutments of a bridge crossing a canyon site to avoid seismic pounding[J]. Earthquake Engineering and Structural Dynamics, 2010, 39: 303-323.
[3] 徐然,尹晓春. 桥梁多次重撞击动力学响应的瞬态波效应法[J]. 南京理工大学学报, 2010, 34( 3) : 309 -313.
[4] Kishi N,Bhatti A Q. An equivalent fracture energy concept for nonlinear dynamic response analysis of prototype RC girders subjected to falling-weight impact loading [ J ]. International Journal of Impact Engineering, 2010, 37: 103-113.
[5] Li Yuwen,Xi Fengfeng,Behdinan K. Dynamic modeling and simulation of percussive impact riveting for robotic automation[J]. Journal of Computational and Nonlinear Dynamics, 2010,5 ( 2) : 021011-10.
[6] Yu Tongxi,Yang Jialing,Reid S R. Dynamic behaviour of elastic-plastic free-free beams subjected to impulsive loading[J]. International Journal of Solids and Structures, 1996, 33( 18) : 2659-2680.
[7] 刘中华,尹晓春,唐亮. 局部接触变形模型对简支梁多次弹塑性撞击模拟结果的比较[J]. 南京理工大学学报, 2009, 33( 6) : 739-744.
[8] Hurty W C. Dynamic analysis of structural systems using component modes [J]. AIAA Journal,1965, 3( 4) : 678-685.
[9] 向树红,邱吉宝,王大钧. 模态分析与动态子结构方法新进展[J]. 力学进展, 2004, 34( 3) : 289-303.
[10] Wu S C,Haug E J. A substructure technique for dynamics of flexible mechanical systems with contact-impact [J]. Journal of Mechanical Design, 1990, 112( 3) : 390-398.
[11] Guo Anping,Hong Jiazhen,Yang Hui. A dynamic model with substructures for contact-impact analysis of flexible multibody systems [J]. Science in China ( Series E) , 2003, 46( 1) : 33-40.
[12] Guo Anping,Batzer S. Substructure analysis of a flexible system contact-impact event[J]. Journal of Vibration and Acoustics, 2004, 26( 1) : 126-131.[13] 刘锦阳. 研究柔性体碰撞问题的子结构离散方法[J]. 计算力学学报, 2001, 18( 1) : 28-32.
[14] 沈煜年,尹晓春. 非均质柔性杆碰撞瞬态动力学动态子结构法[J]. 工程力学, 2008, 25( 11) : 42-47.
[15] Shen Yunian,Yin Xiaochun. Dynamic substructure model for multiple impact responses of micro /nano piezoelectric precision drive system[J]. Science in China ( Series E) , 2009, 52( 3) : 622-633.
[16] 王文亮. Hurty-Craig 约束模态综合法的动力原理和它的一种变体[J]. 复旦大学学报( 自然科学版) , 1982, 21( 2) : 121-130.

备注/Memo

备注/Memo:
国家自然科学基金(10872095);总装预研重点项目;江苏省自然科学基金(BK2008408)
更新日期/Last Update: 2012-10-12