[1]陈思佳,章定国.带有载荷的柔性杆柔性铰机器人刚柔耦合动力学分析[J].南京理工大学学报(自然科学版),2012,36(01):182-188.
 CHEN Si-jia,ZHANG Ding-guo.Rigid-flexible Coupling Dynamics of Flexible-link and Flexible-joint Robots Carrying Payload[J].Journal of Nanjing University of Science and Technology,2012,36(01):182-188.
点击复制

带有载荷的柔性杆柔性铰机器人刚柔耦合动力学分析
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年01期
页码:
182-188
栏目:
出版日期:
2012-02-29

文章信息/Info

Title:
Rigid-flexible Coupling Dynamics of Flexible-link and Flexible-joint Robots Carrying Payload
作者:
陈思佳; 章定国;
南京理工大学理学院;
Author(s):
CHEN Si-jiaZHANG Ding-guo
School of Sciences,NUST,Nanjing 210094,China
关键词:
柔性杆柔性铰机器人 载荷 刚-柔耦合 动力学
Keywords:
flexible-link and flexible-joint robots payloads rigid-flexible coupling dynamics
分类号:
TP242
摘要:
为了研究柔性机器人在做大范围运动时关节铰的柔性以及杆端载荷对机器人运动响应的影响,对带有载荷的柔性机器人进行了刚柔耦合动力学建模。将柔性铰的柔性简化为线弹性扭簧,计及柔性铰质量。考虑柔性杆横向弯曲变形和纵向拉伸变形,且在纵向位移中计及由于横向变形而引起的纵向缩短项,即非线性耦合变形项。采用假设模态法描述柔性杆变形,运用第二类Lagrange方程推导得到了带有载荷的柔性杆柔性铰机器人的刚柔耦合动力学方程。求解这组方程得到柔性机器人的动力学性态。将带有载荷的柔性杆柔性铰机器人与不带载荷的柔性杆柔性铰机器人对比发现,柔性杆末端载荷增大了系统的响应幅值,降低了响应频率。将柔性杆柔性铰机器人与柔性杆刚性铰机器人对比发现,铰的柔性作用同样使系统的响应幅值增大,响应频率减小了。
Abstract:
To study the influence of the flexible joint and the tip mass on the robot motion response when the flexible robot is in overall motion,the rigid-flexible coupling model of a flexible robot carrying a payload is presented.The flexibility of the flexible joint is modeled as a linearly elastic torsional spring and the mass of the joint is also considered here.Both the transversal deformation and the longitudinal deformation of the flexible link are considered.The nonlinear coupling term,also known as the longitudinal shortening caused by transversal deformation,is considered in the total longitudinal deformation.The approach of assumed modes is used to describe the deformation of the flexible link.The rigid-flexible coupling dynamic equations of the flexible-link and flexible-joint robot carrying a payload are established via employing the second kind of Lagrange ’ s equation.The dynamics of the flexible robot is obtained by solving this mathematical model.Comparing a flexible-link and flexible-joint robot carrying a payload with a flexible-link and flexible-joint robot without payload,we can find that the payload increases the response amplitude,but decreases the response frequency.Comparing a flexible-link and flexible-joint robot with a flexible-link and rigid-joint robot,we can also find that the flexibility of the joint increases the response amplitude,but decreases the response frequency,too.

参考文献/References:

[1] Sunada W H,Dubowsky S. On the dynamic analysis and behavior of industrial robotic manipulators with elastic members[J]. Transactions of the ASME Journal of Mechanisms,Transmissions,and Automation in Design, 1983, 105: 42-51.
[2] Book W J. Recursive Lagrangian dynamics of flexible manipulator arms[J]. The International Journal of Robotics Research, 1984,3 ( 3) : 87-101.
[3] Zhang Dingguo. Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms[J]. Applied Mathematics and Mechanics,2009, 30( 10) : 1283-1294.
[4] Meirovitch L,Stemple T. Hybrid equations of motion for flexible multibody systems using quasi-coordinates [J]. Journal of Guidance,Control,and Dynamics, 1995, 18( 4) : 678-688.
[5] 王从庆,张承龙. 自由浮动柔性双臂空间机器人系统的动力学控制[J]. 机械工程学报, 2007, 43( 10) : 196-200.
[6] Xi F,Fenton R G. Coupling effect of a flexible link and a flexible joint [J]. The International Journal of Robotics Research, 1994, 13( 5) : 443-453.
[7] 边宇枢,陆震. 柔性机器人动力学建模的一种方法[J]. 北京航空航天大学学报, 1999, 25( 4) : 486-490.
[8] Al-Bedoor B O,Almusallam A A. Dynamics of flexiblelink and flexible-joint manipulator carrying a payload with rotary inertia[J]. Mech Mach Theory,2000,35: 785-820.
[9] Zhang Dingguo,Zhou Shengfeng. Dynamics of flexiblelink and flexible-joint robots[J]. Applied Mathematics and Mechanics, 2006, 26( 5) ; 695-704.
[10] Likins P W. Finite element appendage equations for hybrid coordinate dynamic analysis [J]. Journal of Solid and Structures, 1972,8 : 709-731.
[11] Liu Jin-yang,Hong Jia-zhen. Geometric stiffening of flexible link system with large overall motion[J]. Computers and Structures, 2003, 81: 2829-2841.[12] 章定国,朱志远. 一类刚柔耦合系统的动力刚化分析[J]. 南京理工大学学报, 2006, 30( 1) : 21-25, 33.
[13] 章定国,余纪邦. 做大范围运动的柔性梁的动力学分析[J]. 振动工程学报, 2006, 19( 4) : 475-480.
[14] 余纪邦,章定国. 考虑“动力刚化”的刚柔耦合多体系统动力学建模的子系统法[J]. 南京理工大学学报, 2006, 30( 4) : 409-413.
[15] 章定国,吴胜宝,康新. 考虑尺度效应的微梁刚柔耦合动力学分析[J]. 固体力学学报, 2010, 31( 1) : 32-39.
[16] 吴胜宝,章定国. 大范围运动刚体-柔性梁刚柔耦合动力学分析[J]. 振动工程学报, 2011, 24( 1) : 1-7.

相似文献/References:

[1]冯庆兴,杨华,王良国.悬臂梁受冲击载荷作用形成的超静定问题[J].南京理工大学学报(自然科学版),1999,(02):86.
 Feng Qingxing Yang Hua Wang Liangguo.The Hyperstatic Problem in a Cantilever Beam Under Impact[J].Journal of Nanjing University of Science and Technology,1999,(01):86.

备注/Memo

备注/Memo:
国家自然科学基金(10772085;11132007);江苏省“青蓝工程”;南京理工大学自主科研专项计划(2011YBXM32)
更新日期/Last Update: 2012-10-12