[1]何玲,徐诚.两构件冲击接触过程的理论与数值模拟[J].南京理工大学学报(自然科学版),2012,36(02):195-201.
 HE Ling,XU Cheng.Theory and Simulation of Impact Contact Process of Two Components[J].Journal of Nanjing University of Science and Technology,2012,36(02):195-201.
点击复制

两构件冲击接触过程的理论与数值模拟
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年02期
页码:
195-201
栏目:
出版日期:
2012-04-30

文章信息/Info

Title:
Theory and Simulation of Impact Contact Process of Two Components
作者:
何玲; 徐诚;
南京理工大学机械工程学院;
Author(s):
HE LingXU Cheng
School of Mechanical Engineering,NUST,Nanjing 210094,China
关键词:
接触力 最大变形量 作用时间 超弹性 弹性 弹塑性 赫兹理论
Keywords:
impact forces maximum indention actuation duration hyper-elasticity elasticity elasticity-plasticity Hertz theory
分类号:
TB122
摘要:
该文采用基于赫兹理论的非线性阻尼弹簧接触模型,分别模拟特殊形状和材料的两构件间弹性、超弹性和弹塑性冲击接触过程,数值计算结果仅为有限元结果的50%。根据有限元计算结果对非线性弹簧阻尼模型进行修正,得到两构件弹性、超弹性和弹塑性冲击接触的接触力、最大变形量和冲击作用时间修正表达式。结果显示,修正模型与有限元模型的误差小于5%,采用修正模型能够方便地得到冲击过程中的相关参数,该模型可作为描述两构件冲击过程的数值计算手段。
Abstract:
The non-linear damping-spring model based on Hertz theory is adopted to simulate the impact contact process of two special shape and material components with the elasticity,the hyper-elasticity and the elasticity-plasticity.The simulation results are 50% that of the finite element analysis.According to the finite element computation result,the non-linear damping-spring model is corrected,and the corrected expression of the impact force,the maximum indention and the actuation duration of the two components are obtained.The results show that the error between the corrected model and the finite element computation is less than 5%,and the impact parameters can be obtained easily through the corrected model.The model can be used to describe the impact process of two components.

参考文献/References:

[1] Sinclair G B. Quasi-static normal indentation of an elastoplastic half-space by a rigid sphere -Ⅱ[J]. Int J Solid Struct, 1985, 21: 865-888.
[2] Tillett J P A. A study of the impact on sphere of plates [J]. Proc R Soc, 1954,B67( 9) : 677-688.
[3] Thornton C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J]. Journal of Applied Mechanics, 1997, 64( 2) : 383-386.
[4] Kral F R. Elastic-plastic finite element analysis of repeated indentation of a half-space by a rigid sphere [J ]. Journal of Applied Mechanics,1993,60 ( 4) : 829-841.
[5] Wu Chuan-yu. Rebound behaviour of spheres for plastic impacts[J]. Int J Impact Eng, 2003( 28) : 929-946.
[6] Ahn Kil-young. A modeling of impact dynamics and its application to impact force prediction[J]. Journal of Mechanical Science and Technology, 2005, 19( 1) : 422 -428.
[7] Kharaz A H,Gortham D A,Salman A D. Accruate measurement of particle impact parameters[J]. Measurement of Science and Technology,1999, 10( 1) : 31 -35.

备注/Memo

备注/Memo:
国家科技支撑项目(2008BAK40B02)
更新日期/Last Update: 2012-10-12