[1]叶树霞,姚娟,王为群,等.一类2-D离散滞后系统的非脆弱保代价控制[J].南京理工大学学报(自然科学版),2012,36(02):285-290.
 YE Shu-xia,YAO Juan,WANG Wei-qun.Non-fragile Guaranteed Cost Control for Class of 2-D Discrete Systems with Shift-delays[J].Journal of Nanjing University of Science and Technology,2012,36(02):285-290.
点击复制

一类2-D离散滞后系统的非脆弱保代价控制
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年02期
页码:
285-290
栏目:
出版日期:
2012-04-30

文章信息/Info

Title:
Non-fragile Guaranteed Cost Control for Class of 2-D Discrete Systems with Shift-delays
作者:
叶树霞; 姚娟; 王为群;
南京理工大学自动化学院; 江苏科技大学电子信息学院; 南京理工大学理学院;
Author(s):
YE Shu-xia13YAO Juan1WANG Wei-qun2
1.School of Automation;2.School of Sciences,NUST,Nanjing 210094,China;3.School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China
关键词:
2-D离散系统 保代价控制 滞后 稳定性 非脆弱控制器
Keywords:
2-D discrete systems guaranteed cost control shift-delay stabilitynon-fragile controller
分类号:
TP13
摘要:
针对一类基于Roesser模型状态和输入滞后的二维离散不确定非线性系统,研究了其非脆弱鲁棒保代价控制问题。系统的非线性部分满足广义Lipschitze条件,不确定性部分是范数有界的。采用Lyapunov方法分析了无不确定性和控制输入时该类系统的稳定性和代价性能,设计了非脆弱滞后状态反馈控制器,使得闭环系统渐近稳定,给出了带有滞后的代价函数和代价性能上界。所得结果为滞后非依赖的线性矩阵不等式形式。算例说明了该判据的有效性。
Abstract:
The non-fragile robust guaranteed cost control problem of the 2-D discrete uncertain nonlinear systems described by the Roesser model with the state and input delays is studied.The nonlinear element of systems satisfies the generalized Lipschitze condition and the parameter uncertainty is assumed to be norm-bounded.By using the Lyapunov method,the stability and the cost function for the systems without uncertainty and control input are analysed.A non-fragile delayed-state feedback controller is design to make the closed-loop system asymptotically stable.The cost function with shift-delays and its upper bound is given.All the results are delay-independent and expressed in terms of the linear matrix inequlities.An example is given to show the effectiveness of present criteria.

参考文献/References:

[1] Kaczorek T. Two-dimensional linear systems[M]. New York: Springer-Verlag, 1984.
[2] Roesser R P. A discrete state-space model for linear image processing[J]. IEEE Transactions on Automatic Control, 1975, 20( 1) : 1-10.
[3] Givone D D,Roesser R P. Multidimensional linear iterative circuits-general properties[J]. IEEE Transactions on Computers, 1972,C-21( 10) : 1067-1073.[4] Dhawan A,Kar H. An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model [J ]. Signal Processing, 2010, 90: 2648-2654.
[5] 盛梅,王为群,邹云. 一类不确定非线性2-D Markovian 跳跃系统的鲁棒随机镇定[J]. 南京理工大学学报, 2008, 32( 2) : 205-208.
[6] Xu Huiling,Zou Yun,Xu Shengyuan. Robust H∞ control for a class of uncertain nonlinear twodimensional systems[J]. International Journal of Innovational Computing and Information Control,2005,1 ( 2) : 181-191.
[7] Xu Huiling,Zou Yun,Lu Junwei, et al. Robust H∞ control for a class of uncertain nonlinear two-dimensional systems with state delays[J]. Journal of the Franklin Institute, 2005, 342( 7) : 877-891.
[8] Paszke W,Lam J,Gakowski K, et al. Delay-dependent stability condition for uncertain linear 2-D statedelayed systems[A]. Proceeding of the 45th IEEE Conference on Decision and Control[C]. San Diego, CA,USA: IEEE, 2006: 2783-2788.
[9] Izuta G. Stability of a class of 2-D output feedback control systems[A]. IEEE International Conference on Systems,Man and Cybernetics,ISIC[C]. Montreal, Que: IEEE, 2007, 2722-2726.
[10] Izuta G. Stability and disturbance attenuation of 2-D discrete delayed systems via memory state feedback [J]. International Journal of General Systems, 2007, 36( 3) : 263-280.
[11] Izuta G. Stabilising observer controllers for 2-D linear discrete systems with delays[A]. The 6th World Congress on Intelligent Control and Automation,WCICA[C]. Dalian, China: IEEE, 2006: 695-699.
[12] Guan Xinping,Long Chengnian,Duan Guangren. Robust optimal guaranteed cost control for 2D discrete systems [J]. IEE Proceedings—Control Theory and Applications, 2001, 148( 5) : 355-361.
[13] Dai Jiangtao,Wang Weiqun. LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Roesser model[A]. IEEE Conference on Cybernetics and Intelligent Systems[C]. Chengdu, China: IEEE, 2008: 818-822.
[14] Yang Guanghong,Wang Jianliang. Non-fragile H∞ control for linear systems with multiplicative controller gain variations [J]. Automatica, 2001, 37( 5) : 727-737.
[15] Fridman E,Shaked U. Delay-dependent stability and H∞ control: constant and time-varying delays[J]. International Journal of Control, 2003, 76( 1) : 48-60.

备注/Memo

备注/Memo:
国家自然科学基金(61074006;60874007);教育部高等学校博士点基金(20070288055;200802880024)
更新日期/Last Update: 2012-10-12