[1]朱正礼,赵春霞,侯迎坤,等.基于多特征的旋转不变纹理图像检索[J].南京理工大学学报(自然科学版),2012,36(03):375-380.
 ZHU Zheng-li,ZHAO Chun-xia,HOU Ying-kun,et al.Rotation-invariant Texture Image Retrieval Based on Multi-feature[J].Journal of Nanjing University of Science and Technology,2012,36(03):375-380.
点击复制

基于多特征的旋转不变纹理图像检索
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年03期
页码:
375-380
栏目:
出版日期:
2012-06-30

文章信息/Info

Title:
Rotation-invariant Texture Image Retrieval Based on Multi-feature
作者:
朱正礼; 赵春霞; 侯迎坤; 范燕;
南京理工大学计算机科学与技术学院; 南京林业大学信息科学技术学院; 泰山学院信息科学技术学院; 江苏科技大学电子信息学院;
Author(s):
ZHU Zheng-li12ZHAO Chun-xia1HOU Ying-kun13FAN Yan4
1.School of Computer Science and Technology,NUST,Nanjing 210094,China; 2.College of Information Science and Technology,Nanjing Forestry University,Nanjing 210037,China; 3.School of Information Science and Technology,Taishan University,Taian 271021,China; 4.School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China
关键词:
图像检索 旋转不变性 非下采样轮廓波变换 灰度共生矩阵 相似性度量
Keywords:
image retrieval rotational invariance nonsubsampled contourtlet transform gray level concurrence matrix similarity measurement
分类号:
TP391.41
摘要:
为了消除图像旋转对图像检索的影响,提出了一个基于非下采样轮廓波变换、灰度共生矩阵和新相似性度量的旋转不变纹理图像检索算法。非下采样轮廓波变换具有各向异性和平移不变性。灰度共生矩阵描述了图像的方向性、邻近空间关系和方差的变化范围。通过计算每个非下采样轮廓波变换尺度下的所有子带的平均能量和平均标准差,灰度共生矩阵的二阶矩角、惯性熵、惯性矩、反差分矩,惯性相关系数的均值、标准差,得到具有旋转不变性的纹理多特征。提出一种新的相似性度量以改进纹理图像检索性能。实验结果表明,对于1个含640幅图像的旋转纹理图像库,与基于双树复小波变换的方法相比,该文图像检索算法将旋转纹理图像检索准确率由73.28%提高至80.71%。
Abstract:
In order to eliminate the effect of image rotation on image retrieval,a novel rotation-invariant texture image retrieval algorithm is presented based on the nonsubsampled contourlet transform(NSCT),gray level concurrence matrix(GLCM)and novel similarity measurement.The NSCT has anisotropy and translation invariability.The GLCM reflects the direction,adjacency spacing relationship and range of variance change of the image.The rotation-invariant features are achieved by calculating the average energy and average standard deviation of all subbands at each NSCT scale,the mean and covariance of the second moment angle,inertia entropy,inertia moment,contrast points moment of the GLCM.A novel similarity measure is presented to improve the retrieval performance of texture images.Experimental results demonstrate that:compared with the dual tree-complex wavelet transform based approach,the image retrieval algorithm improves the retrieval accuracy from 73.28% to 80.71% for the rotated database of 640 images.

参考文献/References:

[1] 孙兴华,郭丽,王正群,等. 商标图像检索中子图像特征融合准则研究[J]. 南京理工大学学报,2002, 26( 5) : 508-511.
Sun Xinghua,Guo Li,Wang Zhengqun, et al. Research on sub-image feature fusion rules in trademark image retrieval[J]. Journal of Nanjing University of Science and Technology, 2002, 26( 5) : 508-511.
[2] Z Jianguo,Tan Tieniu. Brief review of invariant texture analysis methods[J]. Pattern Recognition,2001,35 ( 3) : 735-747.
[3] Tamura H S,Yamawaki T. Textural features corresponding to visual perception[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1978, SMC-8( 6) : 460-473.
[4] Haralick R M, Shanmugam K,Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man,and Cybernetics,1973,SMC - 3 ( 6 ) : 610 -621.
[5] Eichmann G,Kasparis T. Topologically invariant texture descriptors[J]. Computer Vision,Graphics,and Image Processing, 1988, 41( 3) : 267-281.
[6] Lam W K,Li C K. Rotated texture classification by improved iterative morphological decomposition[J]. IEE Proceedings: Vision,Image and Signal Processing, 1997, 144( 3) : 171-179.
[7] Han Ju,Ma Kaikuang. Rotation-invariant and scale-invariant Gabor features for texture image retrieval[J]. Image and Vision Computing, 2007, 25( 9) : 1474-1481.
[8] Manthalkar R,Biswas P K,Chatterji B N. Rotation and scale invariant texture features using discrete wavelet packet transform [J]. Pattern Recognition Letters, 2003, 24( 14) : 2455-2462.
[9] Kokare M,Biswas P K,Chatterji B N. Rotationinvariant texture image retrieval using rotated complex wavelet filters[J]. IEEE Transactions on Systems, Man,and Cybernetics. Part B: cybernetics,2006,36 ( 6) : 1273-1282.
[10] Cunha A L,Zhou Jianping,Do M N. The nonsubsampled contourlet transform: Theory, design, and applications[J]. IEEE Transactions on Image Processing,2006,15 ( 10) : 3089-3101.
[11] Manjunath B S,Ma W Y. Texture features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18 ( 8) : 837-842.

相似文献/References:

[1]黄元元,郭丽,杨静宇.基于目标区域颜色与纹理特征的图像检索[J].南京理工大学学报(自然科学版),2003,(03):286.
 HuangYuanyuan GuoLi Yang.An Image Retrieval Based on Object Region’s Color and Texture Features[J].Journal of Nanjing University of Science and Technology,2003,(03):286.
[2]钱晓峰,阎伟.基于形状特征划分的树状区域匹配图像检索[J].南京理工大学学报(自然科学版),2001,(01):48.
 QianXiaofeng YanWei.Regions with Tree Relationships Segmented on Shape Features Matching for Image Retrieval[J].Journal of Nanjing University of Science and Technology,2001,(03):48.

备注/Memo

备注/Memo:
国家自然科学基金(90820306;60632050;61072148);山东省自然科学基金(ZR2011FM004)
更新日期/Last Update: 2012-10-12