[1]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
 MEN Zhi guo,PENG Xiu yan,WANG Xing mei,et al.Volterra Series Kernels Estimation Algorithm Based on GA Optimized BP Neural Network Identification[J].Journal of Nanjing University of Science and Technology,2012,36(06):0.
点击复制

基于GA优化BP神经网络辨识的Volterra级数核估计算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年06期
页码:
0
栏目:
出版日期:
2012-12-31

文章信息/Info

Title:
Volterra Series Kernels Estimation Algorithm Based on GA Optimized BP Neural Network Identification
作者:
门志国 1彭秀艳 1王兴梅 2胡忠辉 1孙双双 3
哈尔滨工程大学 1.自动化学院;2.计算机科学与技术学院;3.理学院,黑龙江 哈尔滨 150001
Author(s):
MEN Zhi guo1PENG Xiuyan 1WANG Xingmei 2HU Zhonghui 1SUN Shuangshuang 3
1.College of Automation;2.College of Computer Science and Technology;3.College of Science,Harbin Engineering University,Harbin 150001,China
关键词:
遗传算法反向传播神经网络混沌特性识别船舶运动多步预报
Keywords:
genetic algorithmback propagation neural networkchaos characteristic identificationship motionmultistep prediction
分类号:
TP29
摘要:
为取得更有效的船舶运动预报效果,提出了一种利用遗传算法(GA)优化单输出三层反向传播(BP)神经网络辨识Volterra级数核的算法。在船舶航行姿态时间序列的混沌特性识别基础上,分析了GA、BP神经网络和Volterra级数模型的特征。利用GA优化BP神经网络获得最优的初始权值和阈值,根据BP神经网络算法求得最终的最优权值和阈值。进行Taylor级数分解,得到Volterra级数各阶核,对船舶的横摇运动时间序列进行多步预报。仿真实验表明:所提方法预报精度高、时间长,具有有效性和适应性。
Abstract:
In order to obtain more effective prediction results of ship motion,a method is proposed using the genetic algorithm(GA)optimized singleoutput threelayer back propagation(BP)neural network to identify Volterra series kernels.The GA,the BP neural network and the features of the Volterra series model are further analyzed based on the chaos characteristic identification of ship motion attitude time series.The best initial weights and thresholds are obtained by using the GA optimized BP neural network.The final optimal weights and thresholds of model parameters are obtained by the BP neural network algorithm.The multistep prediction of the time series of a ship roll motion is done by making Taylor series decomposition to obtain Volterra series kernels of each order.The simulation experiments show that the proposed algorithm has high precision and long prediction time and effectiveness and adaptability.

参考文献/References:

[1]Chatterjee A.Parameter estimation of Duffing oscillator using Volterra series and multitone excitation[J].International Journal of Mechanical Sciences,2010,52(1):1716-1722. 
[2]Du Baozhu,Lam J.Stability analysis of static recurrent neural networks using delaypartitioning and projection[J].Neural Networks,2009,22(1):343-347. 
[3]Wu Wei,Wang Jian,Cheng Mingsong,et al.Convergence analysis of online gradient method for BP neural networks[J].Neural Networks,2011,24(1):91-98.
[4]陈得宝,赵春霞.基于改进GA的WRBF神经网络设计与应用[J].南京理工大学学报,2007,31(3):370-374. Chen Debao,Zhao Chunxia.Design and application of WRBF neural network based on improved GA[J].Journal of Nanjing University of Science and Technology,2007,31(3):370-374.
[5]李辉,蔡敏,陈斌.基于自适应遗传算法优化BP神经网络[J].信息化研究,2010,36(9):36-39. Li Hui,Cai Min,Chen Bin.Optimized BP neural network based on selfadapted genetic algorithm[J].Informatization Research,2010,36(9):36-39. 
[6]PengXiuyan,Men Zhiguo,Wang Xingmei,et al.The ship motion prediction approach based on BP neural network to identify volterra series kernels[A].Proceedings of the 2011 IEEE International Conference on Information Science and Engineering[C].Yangzhou,China:IEEE,2011:2197-2200.
[7]孙冬梅,李永新.基于Volterra级数及神经网络的非线性系统建模[J].仪器仪表学报,2003,24(4):5-7. Sun Dongmei,Li Yongxin.Nonlinear system modeling method based on Volterra series and neurel network[J].Chinese Journal of Scientific Instrument,2003,24(4):5-7.
[8]唐婉莹,杨宇川,段秀云.BP神经网络对含铝炸药爆热预测的研究[J].南京理工大学学报,2003,27(2):184-187. Tang Wanying,Yang Yuchuan,Duan Xiuyun.Prediction of explosion heat of aluminiferous explosive by BP neural network[J].Journal of Nanjing University of Science and Technology,2003,27(2):184-187. 
[9]WongW K,Yuen C W M,Fan D D,et al.Stitching defect detection and classification using wavelet transform and BP neural network[J].Expert Systems with Applications,2009,36(1):3845-3856. 
[10]Yu Shiwei,Guo Xiufu,Zhu Kejun,et al.A neurofuzzy GABP method of seismic reservoir fuzzy rules extraction[J].Expert Systems with Applications,2010,37(3):2037-2042. 
[11]Xie Qiu,Liu Zixian.Efficiency evaluation for collaborative design based on GABP algorithm[A].Proceedings of the 2008 12th International Conference on Computer Supported Cooperative Work in Design[C].Xi’an,China:IEEE,2008:234-240.

相似文献/References:

[1]李克婧,张小兵.改进型遗传算法在弹丸结构优化设计中的应用[J].南京理工大学学报(自然科学版),2009,(03):339.
 LI Ke-jing,ZHANG Xiao-bing.Application of Improved Genetic Algorithm to Optimization Design of Projectile Structure[J].Journal of Nanjing University of Science and Technology,2009,(06):339.
[2]张俊芳,秦红霞,贾 晋,等.基于改进遗传算法的AGC机组优化组合研究[J].南京理工大学学报(自然科学版),2009,(06):801.
 ZHANG Jun-fang,QIN Hong-xia,JIA Jin,et al.Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(06):801.
[3]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(06):800.
[4]王钟羡,郭晨海,刘 军,等.结构优化设计的猴王遗传算法[J].南京理工大学学报(自然科学版),2004,(04):346.
 WANG Zhong xian,GUO Chen hai,LIU Jun,et al.Monkey-king Genetic Algorithms for Optimal Structural Design[J].Journal of Nanjing University of Science and Technology,2004,(06):346.
[5]李纯莲,王希诚,赵金城.基于浮点数编码的信息熵控制多种群遗传算法[J].南京理工大学学报(自然科学版),2004,(05):453.
 LI Chun-lian,WANG Xi-cheng,ZHAO Jin-cheng.Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding[J].Journal of Nanjing University of Science and Technology,2004,(06):453.
[6]张金萍,等.一种动态种群不对称交叉的新型遗传算法[J].南京理工大学学报(自然科学版),2007,(04):444.
 ZHANG Jin-ping,LIU Jie,LI Yun-gong.Novel Dynamic Population and Anisomerous Crossover Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2007,(06):444.
[7]康明才.基于遗传算法的变电站电压-无功综合控制[J].南京理工大学学报(自然科学版),2002,(05):490.
 KangMingcai.Control Strategy of Voltage and Reactive Power in Substation Based on Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2002,(06):490.
[8]杨云,徐永红,刘凤玉.一种连续探索型自适应遗传算法及其应用[J].南京理工大学学报(自然科学版),2002,(06):580.
 YangYun XuYonghong LiuFengfu.A Self-adaptative Genetic Algorithm Based on Relay Search Method and Its Application[J].Journal of Nanjing University of Science and Technology,2002,(06):580.
[9]刘 皓,胡明昕,朱一亨,等.基于遗传算法和支持向量回归的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
 Liu Hao,Hu Mingxin,Zhu Yiheng,et al.Prediction for state of health of lithium-ion batteries by geneticalgorithm and support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(06):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]

备注/Memo

备注/Memo:
收稿日期:2011-12-29修回日期:2012-10-26 基金项目:黑龙江省科学基金(QC2011C011) 者简介:门志国(1978-),男,博士,主要研究方向:复杂系统建模理论与实践、系统工程,Email:menzhiguo@hrbeu.edu.cn。
更新日期/Last Update: 2012-12-29