[1]李星秀,韦志辉,肖亮.基于稀疏支撑集先验的压缩感知图像序列重建算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
 LI Xing xiu,WEI Zhi hui,XIAO Liang.Compressed Sensing Image Sequence Reconstruction Algorithm Based on Sparse Support Prior[J].Journal of Nanjing University of Science and Technology,2012,36(06):0.
点击复制

基于稀疏支撑集先验的压缩感知图像序列重建算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
36卷
期数:
2012年06期
页码:
0
栏目:
出版日期:
2012-12-31

文章信息/Info

Title:
Compressed Sensing Image Sequence Reconstruction Algorithm Based on Sparse Support Prior
作者:
李星秀 1韦志辉 2肖亮 2
南京理工大学 1.理学院;2.计算机科学与工程学院,江苏 南京 210094
Author(s):
LI Xingxiu1WEI Zhihui2XIAO Liang2
1.School of Sciences;2.School of Computer Science and Engineering,NUST,Nanjing 210094,China
关键词:
稀疏支撑集压缩感知图像序列残差补偿
Keywords:
sparse supportcompressed sensingimage sequencesresidual compensation
分类号:
TN911.72
摘要:
针对现有压缩感知图像序列重建算法重建精度不高、模型参数设置较多的问题,提出了一种结合稀疏支撑集先验和残差补偿的算法。在已知前一帧图像重建结果的基础上,通过求解1个最小化加权l1范数问题得到当前帧图像的初始估计。通过对估计残差进行压缩感知重建并对初始估计加以补偿,得到当前帧图像的最终重建结果。与其他同类算法相比,该算法减少了阈值参数的设置。实验结果表明,在相同的测量值数目下,该算法重建图像的相对误差、峰值信噪比和结构相似度指标均优于同类比较算法。
Abstract:
Aiming at the problems of low accuracy and more model parameters of traditional compressed sensing image sequence reconstruction algorithms,a novel algorithm combining sparse support prior and residual compensation is proposed.The initial estimation of the current image is obtained by solving a weighted l1 norm minimization problem based on knowing the reconstruction of the previous image.The final estimation of the current image is generated by the compressed sensing reconstruction of the estimation error and the compensation of the original estimation.Compared with other similar algorithms,the proposed algorithm reduces the number of threshold parameters.Experimental results show that the proposed algorithm is superior to other similar algorithms in terms of relative error,peak signal to noise radio and structural similarity of reconstructed images with same number of measured values.

参考文献/References:

[1]Donoho D.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306. 
[2]Candès E,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans on Information Theory,2006,52(2):489-509.
[3]孙林慧,杨震,叶蕾.基于自适应多尺度压缩感知的语音压缩与重构[J].电子学报,2011,39(1):40-45. Sun Linhui,Yang Zhen,Ye Lei.Speech compression and reconstruction based on adaptive multiscale compressed sensing theory[J].Acta Electronica Sinica,2011,39(1):40-45.
[4]梁瑞宇,邹采荣,赵力,等.语音压缩感知及其重构算法[J].东南大学学报(自然科学版),2011,41(1):1-5. Liang Ruiyu,Zou Cairong,Zhao Li,et al.Compressed sensing in speech and its reconstruction algorithm[J].Journal of Southeast University(Natural Science Edition),2011,41(1):1-5. 
[5]Selin A.Compressed sensing framework for EEG compression[A].Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing[C].Madison,USA:IEEE,2007:181-184. 
[6]LustigM,Donoho D,Pauly J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195. 
[7]Baraniuk R,Steeghs P.Compressive radar imaging[A].Proceedings of IEEE Radar Conference[C].Boston,USA:IEEE,2007:128-133.
[8]刘记红,徐少坤,高勋章,等.基于随机卷积的压缩感知雷达成像[J].系统工程与电子技术,2011,33(7):1485-1490. Liu Jihong,Xu Shaokun,Gao Xunzhang,et al.Compressed sensing radar imaging based on random convolution[J].Systems Engineering and Electronics,2011,33(7):1485-1490.
[9]贺亚鹏,朱晓华,庄珊娜,等.压缩感知雷达波形优化设计[J].南京理工大学学报,2011,35(4):519-524. He Yapeng,Zhu Xiaohua,Zhuang Shanna,et al.Optimal waveform design for compressive sensing radar[J].Journal of Nanjing University of Science and Technology,2011,35(4):519-524. 
[10]Wei Lu,Vaswani N.Modified compressive sensing for realtime dynamic MR imaging[A].Proceedings of IEEE International Conference on Image Processing[C].Cairo,Egypt:IEEE,2009:3045-3048. 
[11]Tramel E W,Fowler J E.Video compressed sensing with multihypothesis[A].Proceedings of IEEE Data Compression Conference,Snowbird[C].Snowbird,USA:IEEE,2011:193-202.
[12]苏晓园.基于三维稀疏变换的压缩传感视频重构算法研究[D].秦皇岛:燕山大学信息科学与工程学院,2010. 
[13]Vaswani N.LSCSresidual(LSCS):Compressive sensing on the least squares residual[J].IEEE Trans Signal Processing,2010,58(8):4108-4120. 
[14]Vaswani N.Kalman filtered compressed sensing[A].Proceedings of IEEE International Conference on Image Processing[C].San Diego,USA:IEEE,2008:893-896. 
[15]VaswaniN.Modified CS code,KFCS and LSCS new code[EB/OL].http://home.engineering.iastate.edu/~namrata/research/SequentialCS.html#code,2012-10-10. 
[16]WangZ,Bovik A C,Sheikh H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.

相似文献/References:

[1]李洪涛,贺亚鹏,顾陈,等.基于压缩感知的单快拍自适应波束形成算法[J].南京理工大学学报(自然科学版),2012,36(01):91.
 LI Hong-tao,HE Ya-peng,GU Cheng,et al.Compressive Sensing Based Single-snapshot Adaptive Beamforming Algorithm[J].Journal of Nanjing University of Science and Technology,2012,36(06):91.
[2]李晖晖,曾 艳,杨 宁,等.改进的压缩感知重构算法及其在图像融合中的应用[J].南京理工大学学报(自然科学版),2014,38(02):259.
 Li Huihui,Zeng Yan,Yang Ning,et al.Improved compressed sensing reconstruction algorithm and its application in image fusion[J].Journal of Nanjing University of Science and Technology,2014,38(06):259.
[3]刘 曦,侯保林,姚来鹏.基于压缩感知的弹药自动装填系统数据采集方法[J].南京理工大学学报(自然科学版),2016,40(05):544.[doi:10.14177/j.cnki.32-1397n.2016.40.05.007]
 Liu Xi,Hou Baolin,Yao Laipeng.Data acquisition method based on compressive sensing for automatic ammunition loading system[J].Journal of Nanjing University of Science and Technology,2016,40(06):544.[doi:10.14177/j.cnki.32-1397n.2016.40.05.007]

备注/Memo

备注/Memo:
收稿日期:2011-11-07修回日期:2012-10-15 基金项目:国家自然科学基金(61071146;61101194;61101198);江苏省自然科学基金(BK2011701) 作者简介:李星秀(1981-),女,博士,讲师,主要研究方向:稀疏表示、压缩感知,Email:xxlwpl@126.com。
更新日期/Last Update: 2012-12-29