[1]乔 良,张先锋,何 勇,等.颗粒金属材料冲击压缩细观力学仿真模型生成方法[J].南京理工大学学报(自然科学版),2013,37(02):219.
 Qiao Liang,Zhang Xianfeng,He Yong,et al.Study on generation of shock compression meso-mechanic simulation model for particle metal materials[J].Journal of Nanjing University of Science and Technology,2013,37(02):219.
点击复制

颗粒金属材料冲击压缩细观力学仿真模型生成方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
37卷
期数:
2013年02期
页码:
219
栏目:
出版日期:
2013-04-30

文章信息/Info

Title:
Study on generation of shock compression meso-mechanic simulation model for particle metal materials
作者:
乔 良张先锋何 勇史安顺张 将张彦国
南京理工大学 智能弹药技术国防重点实验室,江苏 南京 210094
Author(s):
Qiao LiangZhang XianfengHe YongShi AnshunZhang JiangZhang Yanguo
Ministerial Key Laboratory of ZNDY,NUST,Nanjing 210094,China
关键词:
颗粒金属材料 冲击压缩 细观力学 有限元仿真
Keywords:
particle metal materials shock compression meso-mechanic finite element simulation
分类号:
O383
摘要:
基于颗粒金属材料细观尺度结构特点,引入颗粒形状、尺寸、位置等控制参数来描述颗粒金属材料的细观特性。结合材料细观电镜照片及统计规律,利用随机数生成方法及智能优化算法,生成了能够体现颗粒材料细观分布特性的细观力学仿真模型。以典型颗粒金属材料铝为例,对其不同密实度下的细观模型进行了冲击压缩仿真计算,并与已有实验结果进行对比验证。结果表明:基于生成的细观力学仿真模型,由冲击压缩仿真计算得到的Hugoniot参数与实验数据吻合较好,说明该文方法能够生成合理反映材料真实分布的细观模型,可为颗粒金属材料细观尺度仿真研究提供模型基础。
Abstract:
Based on the mesoscale structural characteristics of particle metal materials,several control parameters including the particle shape,the particle size and the particle position are introduced to describe the meso-scale characteristics.Methods of the random number generation and the intelligent optimization algorithm are adopted incorporatedly with the SEM photograph and the statistical law of the material to make the simulation model gradually approaching to the real particle distribution in meso-scale.The shock compression simulations are conducted on the typical particle metal material aluminium under different total mass degrees.Hugoniot parameters obtained from the simulation are in a good agreement with the experiment.The result shows that the randomly generated simulation model meets the statistical laws and can reproduce the distribution of real particles.The method can provide simulation model for the further numerical research on the particle metal material in meso-scale.

参考文献/References:

[1] 杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.
Yang Wei.Meso mechanics and meso damage mechanics[J].Advances in Mechanics,1992,22(1):1-9.
[2]黄克智,黄永刚.固体本构关系[M].第1版.北京:清华大学出版社,1999.
[3]张研,张子明.材料细观力学[M].北京:科学出版社,2008.
[4]张先锋,赵晓宁.多功能含能结构材料研究进展[J].含能材料,2009,17(6):731-739.
Zhang Xianfeng,Zhao Xiaoning.Review on multifunctional energetic structural materials[J].Chinese Journal of Energetic Materials,2009,17(6):731-739.
[5]张先锋,赵晓宁,乔良.反应金属冲击反应过程的理论分析[J].爆炸与冲击,2010,30(2):145-151.
Zhang Xianfeng,Zhao Xiaoning,Qiao Liang.Study on shock-induced chemical reaction of reactive metal[J].Explosion and Shock Wave,2010,30(2):145-151.
[6]Thadhani N N,Graham R A,Royal T,et al.Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies:Time-resolved pressure measurements and materials analysis[J].J Appl Phys,1997,82(3):1113-1128.
[7]Boslough M B.A thermochemical model for shock-induced reactions(heat detonations)in solids[J].J Chem Phys,1990,92:1839-1848.
[8]Benson D J.An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder[J].Modelling Simul Mater Sci Eng,1994,2:535-550.
[9]Benson D J,Tong W,Ravichandran G.Particle-level modelling of dynamic consolidation of Ti-SiC powders[J].Modelling Simul Mater Sci Eng,1995,3:771-796.
[10]Benson D J,Conley P.Eulerian finite-element simulations of experimentally acquired HMX microstructures[J].Modelling Simul Mater Sci Eng,1999,7:333-354.
[11]Austin R A.Numerical simulation of the shock compression of microscale reactive particle systems[D].Georgia,USA:George W Woodruff School of Mechanical Engineering,Georgia Institute of Technology,2005.
[12]Austin R A.Modeling shock wave propagation in discrete Ni/Al powder mixture[D].Georgia,USA:George W Woodruff School of Mechanical Engineering,Georgia Institute of Technology,2010.
[13]Eakins D E,Thadhani N N.Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures[J].Acta Materialia,2008,56:1496-1510.
[14]Eakins D E,Thadhani N N.Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture[J].J Appl Phys,2007,101(043508):1-11.
[15]Eakins D E.Role of heterogeneity in the chemical and mechanical shock-response of nickel and aluminum powder mixtures[D].Georgia,USA:George W Woodruff School of Mechanical Engineering,Georgia Institute of Technology,2007.
[16]Kuhn M R.Heterogeneity and patterning in the quasi-static behaviour of granular materials[J].Granular Matter,2003,4(4):155-166.
[17]Granqvist C G,Buhrman R A.Ultrafine metal particles[J].J Appl Phys,1976,47(5):2200-2219.
[18]杨秀英,赵艳红,彭晓,等.Cr,Al颗粒尺寸对Ni-Cr-Al复合镀层氧化行为的影响[J].中国腐蚀与防护学报,2011,31(3):190-195.
Yang Xiuying,Zhao Yanghong,Peng Xiao,et al.Size effect of Cr and Al particle on the oxidation behaviour of electrodeposited Ni-Cr-Al composite coatings[J].Journal of Chinese Society for Corrosion and Protection,2011,31(3):190-195.
[19]Stanley P M.LASL shock hugoniot data[M].Los Angeles,USA:University of California Press,1980.
[20]李伟,宋卫东,宁建国.考虑粒子分布特征的复合材料细观力学方法[J].固体力学学报,2010,31(4):339-345.
Li Wei,Song Weidong,Ning Jianguo.A composite micromechanics method considering the grain size probability distribution[J].Chinese Journal of Solid Mechanics,2010,31(4):339-345.
[21]何源,何勇,潘旭超,等.含能破片冲击引爆屏蔽炸药研究[J].南京理工大学学报,2011,35(2):187-193.
He Yuan,He Yong,Pan Xuchao,et al.Initiation of shielded high explosive impacted by energetic fragment[J].Journal of Nanjing University of Science and Technology,2011,35(2):187-193.

备注/Memo

备注/Memo:
收稿日期:2012-03-31 修回日期:2012-09-06
基金项目:国家自然科学基金(10902053); 爆炸科学与技术国家重点实验室开放基金(KFJJ10-6M)
作者简介:乔良(1986-),男,博士生,主要研究方向:材料冲击动力学,战斗部高效毁伤,E-mail:lyqiaoliang@hotmail.com;
通讯作者:张先锋(1978-),男,博士,副教授,博士生导师,主要研究方向:爆炸力学、冲击动力学,高效毁伤与防护技术,E-mail:lynx@mail.njust.edu.cn。
更新日期/Last Update: 2013-04-30