[1]杨 阳,杨静宇.基于显著性分割的红外行人检测[J].南京理工大学学报(自然科学版),2013,37(02):251.
 Yang Yang,Yang Jingyu.Pedestrian detection of infrared images based on saliency segmentation[J].Journal of Nanjing University of Science and Technology,2013,37(02):251.
点击复制

基于显著性分割的红外行人检测
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
37卷
期数:
2013年02期
页码:
251
栏目:
出版日期:
2013-04-30

文章信息/Info

Title:
Pedestrian detection of infrared images based on saliency segmentation
作者:
杨 阳12杨静宇1
1.南京理工大学 计算机科学与工程学院,江苏 南京 210094; 2.河南大学 计算机与信息工程学院,河南 开封 475001
Author(s):
Yang Yang12Yang Jingyu1
1.School of Computer Science and Engineering,NUST,Nanjing 210094,China; 2.School of Computer and Information Engineering,Henan University,Kaifeng 475001,China
关键词:
行人检测 红外图像 显著性分割 关注点 模板匹配
Keywords:
pedestrian detection infrared images saliency segmentation attention points template match
分类号:
TP391.4
摘要:
针对红外图像的特点和行人形状特征提出一种快速高效的行人检测算法。采用基于直方图统计的显著性映射算法获取红外图像的显著图(SM),统计出SM中关注点(AP)的分布,确定了自适应分割阈值; 针对行人姿势的多样性,结合先验概率构建基于形状的级联模板树,在分割图像上根据匹配值确定行人的位置。选取3个公开数据集对比几种行人检测算法。实验结果表明,所提算法在精度和检测速度方面都有明显优势。
Abstract:
An effective approach for pedestrian dectecting is presented in this paper considering the characteristics of infrared images and human shapes.A method based on the statistics histogram of contrast is used to calculate saliency maps(SM)of infrared images.Attention points(AP)extracted from SM are used to decide the segmentation threshold.The hierarchical part-template match tree is built combined with prior probabilities and varieties of human posture.After matching template-tree with segmented results,pedestrians are presented.Experiment results of the approach are compared with that of other methods on three open datasets.The results show that the proposed algorithm has the high precision with less time.

参考文献/References:

[1] Bertozzi M,Broggi A,Grisleri P,et al.Pedestrian detection in infrared images[A].Intelligent Vehicles Symposium,2003 Proceedings IEEE[C].Parma,Italy:Parma University,2003:662-667.
[2]王江涛,杨静宇.红外序列图像中基于形状的人体检测[J].红外与毫米波学报,2007,26(6):437-442.
Wang Jiangtao,Yang Jingyu.Shape-based human detection in infrared image sequences[J].J Infrared Millim Waves,2007,26(6):437-442.
[3]明英,蒋晶珏.基于Cauchy分布的红外视频运动目标检测[J].红外与毫米波学报,2008,27(1):65-71.
Ming Ying,Jiang Jingyu.Moving object detection of infrared video based on Cauchy distribution[J].J Infrared Millim Waves,2008,27(1):65-71.
[4]王春平,孙国正,陈钱.基于灰度冗余的红外图像直方图处理技术[J].南京理工大学学报,2007,31(2):176-179.
Wang Chuping,Sun Guozheng,Chen Qian.Infrared image histogram-dealing technique based on gray redundance[J].Journal of Nanjing University of Science and Technology,2007,31(2):176-179.
[5]Han Junwei,Ngan K N,Li Mingjing,et al.Unsupervised extraction of visual attention objects in color images[J].IEEE Transactions on Circuits and Systems for video technology,2006,16(1):141-145.
[6]Ltti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
[7]Cheng Mingming,Zhang Guoxin,Mitra N J.Global contrast based salient region detection[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Colorado Springs,USA:IEEE Computer Society Press,2011:409-416.
[8]Tran D,Forsyth D A.Configuration estimates improve pedestrian finding[A].Proc Conf Advances in Neural Information Processing Systems[C].Vancouver B C,Canada:NIPSMIT Press,2007.
[9]Zhe Lin,Larry S D.Shape-based human detection and segmentation via hierarchical part-template matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(4):604-618.
[10]Felzenszwakb P,Mcallester D,Ramanan D.A discriminatively trained,multiscale,deformable part model[A].Proc IEEE Conf Computer Vision and Pattern Recognition[C].Anchorage,AK:IEEE Computer Society Press,2008:1-8.
[11]Dollar P,Babenko B,Belongie S,et al.Multiple component learning for object detection[A].Proc European Conf Computer Vision[C].Berlin,German:Springer Berlin Heidelberg,2008,26:211-224.
[12]Gavrila D M,Philomin V.Real-time object detection for Smart vehicles[A].Proc IEEE Int'l Conf Computer Vision[C].Kerkyra,Greece,1999,1:87-93.
[13]Gavrila D M.Bayesian A.Exemplar-based approach to hierarchical shape matching[J].IEEE Trans Pattern Analysis and Machine Intelligence,2007,29(8):1408-1421.
[14]Amit Y,Trouve A.POP:Patchwork of parts models for object recognition[J].Int'l J Computer Vision,2007,75(2):267-282.

相似文献/References:

[1]任汉俊,宋晓宁,於东军.一种新型粗-精表达策略行人检测方法[J].南京理工大学学报(自然科学版),2017,41(05):646.[doi:10.14177/j.cnki.32-1397n.2017.41.05.017]
 Ren Hanjun,Song Xiaoning,Yu Dongjun.Novel pedestrian detection method based on coarse-to-finerepresentation strategy[J].Journal of Nanjing University of Science and Technology,2017,41(02):646.[doi:10.14177/j.cnki.32-1397n.2017.41.05.017]

备注/Memo

备注/Memo:
收稿日期:2011-11-01 修回日期:2013-01-02
作者简介:杨阳(1980-),男,硕士,讲师,主要研究方向:模式识别和机器视觉,E-mail:hooknn@foxmail.com。
更新日期/Last Update: 2013-04-30