[1]杨 青,孙佰聪,朱美臣,等.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报(自然科学版),2013,37(04):517.
 Yang Qing,Sun Baicong,Zhu Meichen,et al.Rolling bearing fault diagnosis method based on wavelet packet entropy and clustering analysis[J].Journal of Nanjing University of Science and Technology,2013,37(04):517.
点击复制

基于小波包熵和聚类分析的滚动轴承故障诊断方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
37卷
期数:
2013年04期
页码:
517
栏目:
出版日期:
2013-08-31

文章信息/Info

Title:
Rolling bearing fault diagnosis method based on wavelet packet entropy and clustering analysis
作者:
杨 青孙佰聪朱美臣杨青川刘 念
沈阳理工大学 信息科学与工程学院,辽宁 沈阳 110159
Author(s):
Yang QingSun BaicongZhu MeichenYang QingchuanLiu Nian
School of Information Science and Engineering,Shenyang Ligong University,Shenyang 110159,China
关键词:
小波包熵 减法聚类 滚动轴承 故障诊断 K均值聚类
Keywords:
wavelet packet entropy subtractive clustering rolling bearing fault diagnosis K-means clustering
分类号:
TH165.3
文献标志码:
A
摘要:
为了提高滚动轴承震动信号故障诊断的准确性,该文提出了一种基于小波包熵和聚类分析的集合型故障诊断方法。用小波包对滚动轴承振动信号进行三层分解,并提取其能量特征。以振动信号的能量分布作为概率分布进行信息熵运算,提取振动信号特征。为了检测是否有故障发生,结合减法聚类的思想,提出采用密度指标最高原则优化初始聚类中心的K均值聚类算法进行聚类。为了检验所提方法的有效性,采用不同故障直径的滚动轴承数据进行实验。实验结果表明,新的聚类方法克服了传统K均值聚类对初始聚类中心敏感的缺陷,其结果可以作为滚动轴承早期故障诊断的依据。
Abstract:
In order to improve the fault diagnosis accuracy of rolling bearing vibration signals,an ensemble approach based on wavelet packet entropy and clustering analysis is presented here.The method of wavelet packet is used to decompose rolling bearing vibration signals into three-layer,and extract the energy characteristics.The vibration signal energy distribution is used as the probability distribution to do the information entropy calculations and extract the vibration signal characteristics.To detect faults,combined with subtractive clustering,the K-means clustering method of optimizing initial cluster centers by the principle of highest density index is proposed.To test the effectiveness of the proposed method,the actual bearing data of rolling bearing with different fault diameters are provided in the experiment.The results show that the proposed approach avoids the sensibility of traditional K-means clustering to initial cluster centers and its result can be used as a basis for rolling bearing fault diagnosis.

参考文献/References:

[1] 汤宝平,蒋永华,张详春.基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法[J].机械工程学报,2010,46(5):37-48.
Tang Baoping,Jiang Yonghua,Zhang Xiangchun.Feature extraction method of rolling bearing fault based on singular value decomposition-morphology filter and empirical mode decomposition[J].Journal of Mechanical Engineering,2010,46(5):37-48.
[2]郝研,王太勇,万剑,等.分形盒维数抗噪研究及其在故障诊断中的应用[J].仪器仪表学报,2011,32(3):540-545.
Hao Yan,Wang Taiyong,Wan Jian,et al.Research on fractal box dimension anti-noise performance and its application in fault diagnosis[J].Chinese Journal of Scientific Instrument,2011,32(3):540-545.
[3]王树亮,王东,冯珍,等.基于小波包-神经网络故障诊断系统研究[J].南京理工大学学报,2004,28(4):356-359.
Wang Shuliang,Wang Dong,Feng Zhen,et al.Study of fault diagnosis system based on wavelet packet-neural network[J].Journal of Nanjing University of Science and Technology,2004,28(4):356-359.
[4]吴丹,顾学迈.一种新的基于支持向量机的自动调制识别方案[J].南京理工大学学报,2006,30(5):569-573.
Wu Dan,Gu Xuemai.Novel scheme of automatic modulation recognition based on SVM[J].Journal of Nanjing University of Science and Technology,2006,30(5):569-573.
[5]冯志刚,王祁,徐涛,等.基于小波包和支持向量机的传感器故障诊断方法[J].南京理工大学学报,2008,32(5):609-614.
Feng Zhigang,Wang Qi,Xu Tao,et al.Sensor fault diagnosis based on wavelet packet and support vector machines[J].Journal of Nanjing University of Science and Technology,2008,32(5):609-614.
[6]Yiakopoulos C T,Gryllias K C,Antoniadis I A.Rolling element bearing fault detection in industrial environments based on a K-means clustering approach[J].Expert Systems with Applications,2011,38(3):2888-2911.
[7]王艳景,乔晓艳,李鹏,等.基于小波包熵和支持向量机的运动想象任务分类研究[J].仪器仪表学报.2010,31(12):2729-2735.
Wang Yanjing,Qiao Xiaoyan,Li Peng,et al.Classification of motor imagery task based on wavelet packet entropy and support vector machines[J].Chinese Journal of Scientific Instrument,2010,31(12):2729-2735.
[8]张荣标,胡海燕,冯友兵.基于小波熵的微弱信号检测方法研究[J].仪器仪表学报,2007,28(11):2078-2084.
Zhang Rongbiao,Hu Haiyan,Fong Youbing.Study on weak signal detection method based on wavelet entropy[J].Chinese Journal of Scientific Instrument,2007,28(11):2078-2084.
[9]潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法[J].自动化学报,2009,35(2):220-224.
Pan Tianhong,Xue Zhenkuang,Li Shaoyuan.An online multi-model identification algorithm based on subtractive clustering[J].Acta Automatica Sinica,2009,35(2):220-224.
[10]Jain A K.Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31(8):651-666.
[11]Erisoglu M,Calis N,Sakallioglu S.A new algorithm for initial cluster centers in k-means algorithm[J].Pattern Recognition Letters,2011,32(14):1701-1705.
[12]Gao Jinxin,Hitchcock D B.James-Stein shrinkage to improve k-means cluster analysis[J].Computational Statistics and Data Analysis,2010,54(9):2113-2127.
[13]Bearing Data Center.Seeded fault test data.http://csegroups.case.edu/bearingdatacenter/home,2012-06-20.

备注/Memo

备注/Memo:
收稿日期:2012-07-12 修回日期:2013-01-15
基金项目:国家自然科学基金(60974070); 辽宁省科学技术计划(2010222005)
作者简介:杨青(1963-),男,教授,主要研究方向:复杂系统故障诊断,E-mail:yangqingxp@126.com。
更新日期/Last Update: 2013-08-31