[1]王 力,钱林方,高 强,等.随动系统负载模拟器执行环节的建模研究[J].南京理工大学学报(自然科学版),2013,37(04):579.
 Wang Li,Qian Lingfang,Gao Qiang,et al.Modeling of actuator in load simulator for servo systems[J].Journal of Nanjing University of Science and Technology,2013,37(04):579.
点击复制

随动系统负载模拟器执行环节的建模研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
37卷
期数:
2013年04期
页码:
579
栏目:
出版日期:
2013-08-31

文章信息/Info

Title:
Modeling of actuator in load simulator for servo systems
作者:
王 力1钱林方1高 强1侯远龙1郭 旗2
1.南京理工大学 机械工程学院,江苏 南京 210014; 2.总装备部工程兵军事代表局 武汉军事代表室,湖北 武汉 430073
Author(s):
Wang Li1Qian Lingfang1Gao Qiang1Hou Yuanlong1Guo Qi2
1.School of Mechanical Engineering,NUST,Nanjing 210014,China; 2.Wuhan Military Representative Office,General Armament Department,Wuhan 430073,China
关键词:
负载模拟器 阀控马达 电液伺服系统 模糊神经网络 灰预测
Keywords:
load simulators valve-controlled motors electro-hydraulic servo system fuzzy neural network grey prediction
分类号:
TP273
文献标志码:
A
摘要:
随动系统负载模拟器执行环节是阀控马达电液伺服系统,该文对其建模方法进行了研究。首先采用机理建模法,推导了阀控马达电液伺服系统的力矩传递函数; 随后采用模糊神经网络和灰预测理论,对其进行了智能建模。不同模型的仿真实验结果表明,机理模型建模精度低、泛化能力差; 基于减法聚类的模糊神经网络建模方法与灰预测建模方法的建模精度较高; 但灰预测建模方法计算量小,更适用于实时控制。研究结果为提高随动系统负载模拟器的力矩控制精度奠定了基础。
Abstract:
The modeling methods of valve-controlled motor,which is the actuator in load simulator for servo system,are studied here.Through the theoretical derivation about the torque transfer function of valve-controlled motor electro-hydraulic servo system,the mechanism modeling is obtained.The fuzzy neural network(FNN)and grey prediction theory modeling(GM)are applied to achieve the intelligent models.Simulation results of several modeling show that the mechanism modeling has bad accuracy and poor generalization ability.Subtractive clustering-based fuzzy neural network modeling and grey prediction modeling have good accuracy.However,the grey prediction theory consumes small calculated amount,and it can be used to control the dynamical loads.The research results lays the foundation to improve the accuracy of torque control in servo system load simulator.

参考文献/References:

[1] 张彦斌,张宁.火炮控制系统及原理[M].北京:北京理工大学出版社,2009:167-168.
[2]曹健,李尚义,马建设,等.新型仿真转台用连续回转伺服马达[J].南京理工大学学报,2001,25(2):152-155.
Cao Jian,Li Shangyi,Ma Jianshe,et al.A new continuous rotary electro-hydraulic servomotor applied to simulator[J].Journal of Nanjing University of Science and Technology,2001,25(2):152-155.
[3]Kayacan E,Kaynak O.Single-step ahead prediction based on the principle of concatenation using grey predictors[J].Expert Systems with Applications,2011,38(8):9499-9505.
[4]Shen Y L,Cao Y,Li T S.Study on electro hydraulic servo loading system using fuzzy model based predictive control with multi-step linearization[A].Proceedings of the World Congress on Intelligent Control and Automation[C].Shanghai,China:IEEE,2002:312-315.
[5]He S,Sepehri N.Modeling and prediction of hydraulic servo actuators with neural networks[A].Proceedings of American Control Conference[C].San Diego:IEEE,1999:3708-3712.
[6]申越,季新源,袁亚雄.灰色系统理论在火炮内弹道性能变化量中的应用[J].南京理工大学学报,2005,29(5):529-531.
Shen Yue,Ji Xinyuan,Yuan Yaxiong.Application of grey-system theory in interior ballistics performance's variety of gun[J].Journal of Nanjing University of Science and Technology,2005,29(5):529-531.
[7]楼俐,徐诚,张飞猛.灰色系统理论及量化分析法在枪械方案设计评价中的应用[J].南京理工大学学报,2010,34(5):581-585.
Lou Li,Xu Cheng,Zhang Feimeng.Application of grey-system theory and quantitative analysis method to scheme design evaluation of small arms[J].Journal of Nanjing University of Science and Technology,2010,34(5):581-585.
[8]吴振顺.液压控制系统[M].北京:高等教育出版社,2008:56-60.
[9]段群杰,张铭均.基于减法聚类和自适应模糊神经网络方法的运动规划器设计[J].兵工学报,2007,28(12):1533-1536.
Duan Qunjie,Zhang Mingjun.Design of motion planner based on subtraction clustering and adaptive fuzzy neural network[J].Acta Armamentar Ⅱ,2007,28(12):1533-1536.
[10]Jelali M,Kroll A.Hydraulic Servo-system modelling,identification and control[M].London:Springer-Verlag London Limited,2003:132-134.

备注/Memo

备注/Memo:
收稿日期:2012-04-09 修回日期:2012-06-25
作者简介:王力(1977-),男,硕士,讲师,主要研究方向:复杂系统建模与仿真、高精度伺服系统设计,E-mail:sdibm9603@aliyun.com。
更新日期/Last Update: 2013-08-31