[1]徐巍华,陈特欢,许 超,等.基于虚拟仪器的非稳态流管道参数辨识[J].南京理工大学学报(自然科学版),2014,38(01):22-26.
 Xu Weihua,Chen Tehuan,Xu Chao,et al.Pipeline parameter identification of non-stationary flows based on LabVIEW[J].Journal of Nanjing University of Science and Technology,2014,38(01):22-26.
点击复制

基于虚拟仪器的非稳态流管道参数辨识
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年01期
页码:
22-26
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
Pipeline parameter identification of non-stationary flows based on LabVIEW
作者:
徐巍华1陈特欢2许 超1谢 磊1王史春3方小生1
1.浙江大学 工业控制技术国家重点实验室,2.浙江大学 智能系统与控制研究所; 浙江 杭州 310027; 3.台州职业技术学院,浙江 台州 318000
Author(s):
Xu Weihua1Chen Tehuan2Xu Chao1Xie Lei1Wang Shichun3Fang Xiaosheng1
1.State Key Laboratory of Industrial Control Technology,Zhejiang University,Hangzhou 310027,China; 2.Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou 310027,China; 3.Taizhou Vocational and Technical College,Taizhou 318000,China
关键词:
虚拟仪器 非稳态流 管道 参数辨识 粒子群优化
Keywords:
laboratory virtual instrument engineering workbench non-stationary flows pipelines parameter identification particle swarm optimization
分类号:
TP14
摘要:
为进行管道监控,采用虚拟仪器可重新配置的嵌入式测控平台CompactRIO搭建了一套监控系统,完成信号传输、数据采集、数据记录、实时信号显示等功能。根据初始条件和边界条件,利用特征线方法,计算得到管道模型整个流场和压力场的分布情况。将计算结果和实际测量值相比较,通过粒子群优化算法完成参数辨识。实际测量值与参数辨识后的对应理论值非常接近,表明了该方法的有效性。
Abstract:
To realize pipeline supervisory control,a monitoring system is established for signal transmission,data acquisition,data recording,real-time signal display and so on by using an embeded measurement and control platform CompactRIO with laboratory virtual instrument engineering workbench(LabVIEW)which can be configured renew.According to the initial conditions and boundary conditions,the distributions of velocities and pressures for a pipeline model are calculated using the method of characteristics.The parameters are identified using the particle swarm optimization algorithm,and the calculation and measurement results are compared.The results show that the measurement values are approximate to the theoretic values of parameter identification,which shows the effectiveness of the method.

参考文献/References:

[1] 陈树学,刘萱.LabVIEW宝典[M].北京:电子工业出版社,2012.
[2]卜雄洙,朱明武.虚拟仪器在自动测试中的应用[J].南京理工大学学报,2000,24(2):109-111.
Bu Xiongzhu,Zhu Mingwu.Application of the virtual instrument in the automatic measuring system[J].Journal of Nanjing University of Science and Technology,2000,24(2):109-111.
[3]苏云森.水资源状况及开发利用分析[J].中国高新企业技术,2012(4):111-112.
Su Yunsen.Status and development analysis of water resources[J].China High Technology Enterprises,2012(4):111-112.
[4]蔡亦钢.流体传输管道动力学[M].杭州:浙江大学出版社,1990.
[5]刘劲军,王益群.流体管道分布参数模型实用拟合方法的研究[J].液压气动与密封,2002(3):6-8.
Liu Jinjun,Wang Yiqun.A study on practical modal approximation of fluid lines with distributed parameters[J].Hyd Pneum and Seals,2002(3):6-8.
[6]才建,李晓平,宫敬,等.含蜡原油管道摩阻系数的辨识计算[J].石油化工高等学校学报,2007,20(2):50-53.
Cai Jian,Li Xiaoping,Gong Jing,et al.Identification of friction factor on waxy oil pipeline[J].Journal of Petrochemical Universities,2007,20(2):50-53.
[7]梁永图.采用辨识法确定管道沿程摩阻系数[J].油气储运,2006,25(9):58-60.
Liang Yongtu.Identification method to determine the friction factor[J].Oil and Gas Storage and Transportation,2006,25(9):58-60.
[8]赵昕,张晓元,赵明登,等.水力学[M].北京:中国电力出版社,2009.
[9]马素霞.泵系统的瞬变流特性[M].北京:中国水利水电出版社,2007.
[10]BlaiDcˇS,Matko D,Geiger G.Simple model of a multi-batch driven pipeline[J].Mathematics and Computers in Simulation,2004,64(6):617-630.
[11]王桂增,叶昊.流体输送管道的泄漏检测与定位[M].北京:清华大学出版社,2010.
[12]Clerc M,Kennedy J.The particle swarm―explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.

备注/Memo

备注/Memo:
收稿日期:2013-06-22 修回日期:2013-10-07
基金项目:国家自然科学基金(F030119-61104048); 中央高校基本科研业务费专项资金; 高等学校访问学者教师专业发展项目(FX2012121)
作者简介:徐巍华(1976-),女,副教授,主要研究方向:网络控制系统与非脆弱鲁棒控制、数据挖掘,E-mail:whxu@csc.zju.edu.cn; 通讯作者:许超(1980-),男,讲师,主要研究方向:分布参数系统最优控制,E-mail:cxu.csc@hotmail.com。
引文格式:徐巍华,陈特欢,许超,等.基于虚拟仪器的非稳态流管道参数辨识[J].南京理工大学学报,2014,38(1):22-26.
投稿网址:http://njlgdxxb.paperonce.org
更新日期/Last Update: 2014-02-28