[1]石海军,钱林方,徐亚栋,等.具有参数区间不确定的机械臂结构优化[J].南京理工大学学报(自然科学版),2014,38(01):100-105.
 Shi Haijun,Qian Linfang,Xu Yadong,et al.Structural optimization for manipulator with interval uncertainties[J].Journal of Nanjing University of Science and Technology,2014,38(01):100-105.
点击复制

具有参数区间不确定的机械臂结构优化
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年01期
页码:
100-105
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
Structural optimization for manipulator with interval uncertainties
作者:
石海军12钱林方1徐亚栋1陈龙淼1
1.南京理工大学 机械工程学院,江苏 南京 210094; 2.南京南瑞集团公司 智能化电气设备研发中心,江苏 南京 211100
Author(s):
Shi Haijun12Qian Linfang1Xu Yadong1Chen Longmiao1
1.School of Mechanical Engineering,NUST,Nanjing 210094,China; 2.Intelligent Electrical Equipment R&D Centre,Nanjing Nanrui Group Co.Ltd.,Nanjing 211100,China
关键词:
多目标优化 区间不确定 量子进化 结构优化
Keywords:
multi-objective optimization interval uncertainty quantum-inspired evolutionary structural optimization
分类号:
THH122; TP18
摘要:
针对具有参数区间不确定的某重载机械臂结构优化问题,该文提出了基于区间不确定分析的性能优化方法和量子进化算法。该方法首先将参数区间变化从参数变差空间映射到目标和约束空间,得到目标和约束性能的灵敏度区域估计,结合给定的性能退化阈值,确定性能优化指标,并作为原优化问题的附加约束,形成外层-内层的优化结构。同时采用改进的双链量子进化算法,以改善普通进化优化算法的收敛速度和优化结果。仿真结果表明,该方法既能保证结构在参数摄动情况下的鲁棒性,又能达到结构轻量化目的,可以有效解决具有参数区间不确定的复杂工程结构优化问题。
Abstract:
To solve the structural optimization problem of heavy-load manipulator with parameter uncertainties,this paper presents a performance optimization technique based on interval uncertainty analysis and a quantum-inspired evolutionary algorithm.In the proposed approach,the parameter perturbations are mapped from variation space into objective and constraint space,and the sensitivity regions of objective and constraints are estimated.The performance optimization index as an additional constraint of original optimization problem can be determined.Combining the given performance degradation threshold an outer-inner structure is formed.An improved double chains quantum evolutionary algorithm is employed to improve the convergence rate and the results of the conventional evolutionary algorithm.Computer simulation shows both the robustness of the structure in the case of structure parameter perturbation and the purpose of weight reduction can be achieved,providing an approach to solve the complex engineering structural optimization problems with parameter uncertainties effectively.

参考文献/References:

[1] 郭宇飞,侯保林.基于隐式Lyapunov函数的一类不确定性机械臂位置控制方法[J].南京理工大学学报,2013,37(3):350-355.
Guo Yufei,Hou Baolin.Position control method for uncertainty manipulators based on implicit Lyapunov function[J].Journal of Nanjing University of Science and Techonology,2013,37(3):350-355.
[2]Lin Xiaoxia,Janak S L,Floudas C A.A new robust optimization approach for scheduling under uncertainty:II.Uncertainty with known probability distribution[J].Computers and Chemical Engineering,2007,31:171-195.
[3]Beyer Hans-Georg,Sendhoff B.Robust optimization—A comprehensive survey[J].Computer Methods in Applied Mechanics and Engineering,2007,196:3190-3218.
[4]Kawas B,Laumanns M,Pratsini E.A robust optimization approach to enhancing reliability in production planning under non-compliance risks[J].OR Spectrum,2013:1-31.
[5]Du X X,Huang B Q.Reliability-based design optimization with equality constraints[J].International Journal for Numerical Methods in Engineering,2007,72:1314-1331.
[6]Lee Ikjin,Choi K K,Du Liu,et al.Dimension reduction method for reliability-based robust design optimization[J].Computers and Structures,2008,86:1550-1562.
[7]Huang B Q,Du X P.A robust design method using variable transformation and Gauss-Hermite integration[J].International Journal for Numerical Methods in Engineering,2006,66:1841-1858.
[8]Li Feng,Meng Guangwei,Sha Lirong,et al.Robust optimization design for fatigue life[J].Finite Elements in Analysis and Design,2011,47:1886-1190.
[9]Shin Sangmun,Samanlioglu Funda,Cho Byung Rea,et al.Computing trade-offs in robust design:Perspectives of the mean squared error[J].Computers & Industrial Engineering,2011,60:248-255.
[10]郭惠昕,岳文辉.含间隙平面连杆机构运动精度的稳健优化设计[J].机械工程学报,2012,48(3):75-81.
Guo Huixin,Yue Wenhui.Design optimization of planar linkage mechanism with joint clearance for improving the robustness of kinematic accuracy[J].Journal of Mechanical Engineering,2012,48(3):75-81.
[11]Ben-Tal A,Den Hertog D,De Waegenaere A,et al.Robust solutions of optimization problems affected by uncertain probabilities[J].Management Science,2013,59(2):341-357.
[12]Li Mian,Azarm Shapour,Boyars Art.A new deterministic approach using sensitivity region measures for multi-objective robust and feasibility robust design optimization[J].Transactions of the ASME,2006,128:874-883.
[13]Guo Xu,Bai Wei,Zhang Weisheng,et al.Confidence structural robust design and optimization under stiffness and load uncertainties[J].Computer Methods in Applied Mechanics and Engineering,2009,198:3378-3399.
[14]张曙光.不确定结构分析及优化中的区间模型[J].长春工程学院学报:自然科学版,2009,10(3):1-3.
Zhang Shuguang.Interval model of uncertain structure analysis and optimization[J].Journal of Changchun College of Engineering:Natural Science Edition,2009,10(3):1-3.
[15]董荣梅,孙伟,许焕卫.基于区间分析的非概率稳健优化设计[J].大连理工大学学报,2011,51(1):51-55.
Dong Rongmei,Sun Wei,Xu Huanwei.Non-probabilistic robust optimization design based on interval analysis[J].Journal of Dalian University of Technology,2011,51(1):51-55.
[16]李方义,李光耀,郑刚.基于区间的不确定多目标优化方法研究[J].固体力学学报,2010,31(1):86-92.
Li Fangyi,Li Guangyao,Zheng Gang.Uncertain multi-objective optimization method based on interval[J].Chinese Journal of Solid Mechanics,2010,31(1):86-92.
[17]Li Panchi,Song K P,Shang F H.Double chains quantum genetic algorithm with application to neuro-fuzzy controller design[J].Advances in Engineering Software,2011,42:875-886.

相似文献/References:

[1]汤可宗,杨静宇,高尚,等.一种改进的求解多目标优化问题的进化算法[J].南京理工大学学报(自然科学版),2010,(04):464.
 TANG Ke-zong,YANG Jing-yu,GAO Shang,et al.Improved Evolutionary Algorithm for Multi-objective Optimization Problems[J].Journal of Nanjing University of Science and Technology,2010,(01):464.
[2]周端,申晓宁,郭毓,等.基于多目标优化的挠性航天器姿态机动路径规划[J].南京理工大学学报(自然科学版),2012,36(05):846.
 ZHOU Duan,SHEN Xiao-ning,GUO Yu,et al.Profile Planning for Attitude Maneuver of Flexible SpacecraftsBased on Multi-objective Optimization[J].Journal of Nanjing University of Science and Technology,2012,36(01):846.
[3]施展 ,陈庆伟.基于改进的多目标量子行为粒子群优化算法的多无人机协同任务分配[J].南京理工大学学报(自然科学版),2012,36(06):0.
 SHI Zhan,CHEN Qing wei.Cooperative Task Allocation for Multiple UAVs Based on Improved Multiobjective Quantumbehaved Particle Swarm Optimization Algorithm[J].Journal of Nanjing University of Science and Technology,2012,36(01):0.
[4]申晓宁,郭毓,陈庆伟,等.多目标遗传算法在机器人路径规划中的应用[J].南京理工大学学报(自然科学版),2006,(06):659.
 SHEN Xiao-ning,GUO Yu,CHEN Qing-wei,et al.Application of Multi-objective Optimization Genetic Algorithm to Robot Path Planning[J].Journal of Nanjing University of Science and Technology,2006,(01):659.
[5]汤可宗,李佐勇,詹棠森,等.一种基于Pareto关联度支配的多目标粒子群优化算法[J].南京理工大学学报(自然科学版),2019,43(04):439.[doi:10.14177/j.cnki.32-1397n.2019.43.04.009]
 Tang Kezong,Li Zuoyong,Zhan Tangsen,et al.A multi-objective particle swarm optimization algorithmbased on Pareto correlation degree domination[J].Journal of Nanjing University of Science and Technology,2019,43(01):439.[doi:10.14177/j.cnki.32-1397n.2019.43.04.009]

备注/Memo

备注/Memo:
收稿日期:2012-08-08 修回日期:2012-09-29
基金项目:国家科研项目(A2620110003)
作者简介:石海军(1986-),男,博士生,主要研究方向:结构与优化,E-mail:opt_bingo@163.com; 通讯作者:钱林方(1961-),男,博士,教授,主要研究方向:火炮总体设计,E-mail:lfqian@vip.163.com。
引文格式:石海军,钱林方,徐亚栋,等.具有参数区间不确定的机械臂结构优化[J].南京理工大学学报,2014,38(1):100-105.
投稿网址:http://njlgdxxb.paperonce.org
更新日期/Last Update: 2014-02-28