[1]刘正凡,蔡晨晓,殷明慧,等.切换时滞系统的时滞反馈镇定[J].南京理工大学学报(自然科学版),2014,38(02):291-298.
 Liu Zhengfan,Cai Chenxiao,Yin Minghui,et al.Stabilization of delay feedback of switched system with switching delay[J].Journal of Nanjing University of Science and Technology,2014,38(02):291-298.
点击复制

切换时滞系统的时滞反馈镇定
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年02期
页码:
291-298
栏目:
出版日期:
2014-04-30

文章信息/Info

Title:
Stabilization of delay feedback of switched system with switching delay
作者:
刘正凡蔡晨晓殷明慧邹 云
南京理工大学 自动化学院,江苏 南京 210094
Author(s):
Liu ZhengfanCai ChenxiaoYin MinghuiZou Yun
School of Automation,NUST,Nanjing 210094,China
关键词:
平均驻留时间 指数稳定 切换时滞 时滞状态反馈
Keywords:
average dwell time exponentially stability switching delays state delays feedback
分类号:
TP13
摘要:
该文研究了一类时变时滞状态反馈切换系统的指数稳定性,时滞不仅出现在系统状态中也出现在系统切换信号上。基于平均驻留时间方法和半正定规划方法技巧得到了系统指数稳定的充分条件。利用线性矩阵不等式易于求解的特性,研究保守性较低的状态反馈控制器的设计方法。当设定的匹配与不匹配子系统运行时间周期比大于一定值时,切换时滞系统在相应平均驻留时间内的任意切换信号下是指数稳定的。最后,数值算例验证了该方法的有效性。
Abstract:
In the paper,it is investigated the exponential stability of switched systems by state feedback controller with time-varying delays.Time delays are presented in both states and the switching signals of the controller.Sufficient conditions are obtained based on the average dwell time(ADT)approach and semi-definite programming method for the exponential stability of the system with input delay.By using the linear matrix inequalities technique being easy to find the feasible solution,the less conservative state feedback controller is designed.The global exponential stability is guaranteed under an ADT scheme when the total matched time of switching signals reaches an extent exceeding that of unmatched switching signals.Finally,numerical examples are given to validate the theoretical results and the effectiveness of the proposed scheme.

参考文献/References:

[1] 邹云.反馈的作用机理分析与拓展:一类关联-反馈广义闭环协调控制[J].南京理工大学学报,2010,34(1):1-7.
Zou Yun.Investigation on mechanism and extension of feedback:An extended closed-loop coordinate control of interconnection-regulation and feedback[J].Journal of Nanjing University of Science and Technology,2010,34(1):1-7.
[2]Liberzon Daniel.Switching in systems and control[M].Boston,US:Birkhauser,2003.
[3]Skafidas Efstratios,Evans Robin J,Savkin Andrey V,et al.Stability results for switched controller systems[J].Automatica,1999,35(4):553-564.
[4]Artstein Zvi,Ronen Jonathan.On stabilization of switched linear systems[J].Systems and Control Letters,2008,57(11):919-926.
[5]Lin Hai,Antsaklis P J.Stability and stabilizability of switched linear systems:A survey of recent results[J].IEEE Transactions of Automatic Control,2009,54(2):308-322.
[6]Geromel,Colaneri Patrizio.Stability and stabilization of continuous time switched linear systems[J].SIAM Journal of Control Optimal,2006,45(5):1915-1930.
[7]Sun Ximing,Zhao Jun,Hill David J.Stability and L2-gain analysis for switched delay systems:A delay-dependent method[J].Automatica,2006,42(10):1769-1774.
[8]Branicky M S.Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[J].IEEE Transactions of Automatic Control,1998,43(4):475-482.
[9]王轶卿,李胜,陈庆伟,等.基于无扰切换的非完整系统有限时间镇定控制[J].南京理工大学学报,2012,36(1):18-24.
Wang Yiqing,Li Sheng,Chen Qingwei,et al.Finite-time stabilization control for nonholonomic chained system based on switching control without disturbances[J].Journal of Nanjing University of Science and Technology,2012,36(1):18-24.
[10]沈浩,徐胜元,赵环宇,等.随机切换时滞系统的鲁棒非脆弱保成本控制[J].南京理工大学学报,2009,33(3):293-296.
Shen Hao,Xu Shengyuan,Zhao Huanyu,et al.Robust non-fragile guaranteed cost control for stochastic switching delayed systems[J].Journal of Nanjing University of Science and Technology,2009,33(3):293-296.
[11]Morse A S.Supervisory control of families of linear set point controllers-Part 1:Exact matching[J].IEEE Transactions of Automatic Control,1996,41(10):1413-1431.
[12]Hespanha J P,Morse A S.Stability of switched systems with average dwell-time[J].Proceedings of the 38th IEEE Conference on Decision and Control,IEEE,1999,3:2655-2660.
[13]Zhai Guisheng,Hu Bo,Yasuda Kazunori,et al.Stability analysis of switched systems with stable and unstable subsystems:An average dwell time approach[J].International Journal of Systems Science,2001,32(8):1055-1061.
[14]Sun Ximing,Wang Dong,Wang Wei,et al.Stability analysis and L2-gain of switched delay systems with stable and unstable subsystems[A].Proceedings of 22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control[C].Singapore:IEEE,2007:208-213.
[15]Jack K H,Sjoerd M,Verduyn L.Introduction to functional differential equations[M].New York,US:Springer-Verlag,1993.
[16]Kharitonov Vladimir L.Robust stability analysis of time delay systems:A survey[J].Annual Reviews in Control,1999,23:185-196.
[17]姚娟,王为群,邹云.不确定二维离散状态滞后系统稳定性分析的Jensen不等式方法[J].南京理工大学学报,2013,37(1):60-64.
Yao Juan,Wang Weiqun,Zou Yun.Jensen inequality approach to stability analysis of uncertain two-dimensional discrete systems with state delays[J].Journal of Nanjing University of Science and Technology,2013,37(1):60-64.
[18]苗国英,徐胜元.带有随机噪声和时滞的多自主体系统均方趋同控制[J].南京理工大学学报,2012,36(2):338-341.
Miao Guoying,Xu Shengyuan.Mean square consensus control of multi-agent systems with stochastic noises and time delays[J].Journal of Nanjing University of Science and Technology,2012,36(2):338-341.
[19]Li Xi,Carlos E De Souza.Criteria for robust stability and stabilization of uncertain systems with sate delays[J].Automatica,1997,33(9):1657-1662
[20]Richard Jean Pierre.Time-delay systems:An overview of some recent advances and open problems[J].Automatica,2003,39(10):1667-1694.
[21]Xiang Zhengrong,Chen Qingwei.Robust reliable control for uncertain switched nonlinear systems with time delay under asynchronous switching[J].Applied Mathematics and Computation,2010,216(3):800-811.
[22]Arino O,Hbid M L,Dads E Ait.Delay differential equations and applications[M].Berlin,Germany:Springer-Verlag,2006.
[23]Vu Linh,Morgansen Kristi A.Stability of time-delay feedback switched linear systems[J].IEEE Transactions of Automatic Control,2010,55(10):2385-2390.
[24]Xie Guangming,Wang Long.Stabilization of switched linear systems with time-delay in detection of switching signal[J].Journal of Mathematical Analysis and Applications,2005,305(1):277-290.
[25]Boyd S,Ghaoui Laurent El,Feron E,et al.Linear matrix inequalities in system and control theory[M].Philadelphia,US:SIAM,1994.
[26]吴建成,沃松林,陆国平.非线性广义大系统的指数稳定性与分散控制[J].南京理工大学学报,2009,33(1):21-25.
Wu Jiancheng,Wo Songlin,Lu Guoping.Exponential stability and decentralized control for nonlinear singular large-scale systems[J].Journal of Nanjing University of Science and Technology,2009,33(1):21-25.

相似文献/References:

[1]吴建成,沃松林,陆国平.非线性广义大系统的指数稳定性与分散控制[J].南京理工大学学报(自然科学版),2009,(01):21.
 WU Jian-cheng,WO Song-lin,LU Guo-ping.Exponential Stability and Decentralized Control for Nonlinear Singular Large-scale Systems[J].Journal of Nanjing University of Science and Technology,2009,(02):21.
[2]张晓波,高政南,陈庆伟.基于混合死区调度策略的网络控制系统控制器设计[J].南京理工大学学报(自然科学版),2013,37(02):291.
 Zhang Xiaobo,Gao Zhengnan,Chen Qingwei.Controller design for networked control systems based on mixed deadband scheduling policy[J].Journal of Nanjing University of Science and Technology,2013,37(02):291.

备注/Memo

备注/Memo:
收稿日期:2013-03-13 修回日期:2013-05-19
基金项目:国家自然科学基金(61104064; 61174038; 61203129)
作者简介:刘正凡(1986-),男,博士生,主要研究方向:切换系统控制及大系统理论,E-mail:senseblaze900@163.com; 通讯作者:蔡晨晓(1975-),女,博士,副教授,主要研究方向:奇异摄动系统、复杂网络系统、多维系统等系统分析与控制,风力发电系统与智能电网等,E-mail:ccx5281@vip.163.com。
引文格式:刘正凡,蔡晨晓,殷明慧,等.切换时滞系统的时滞反馈镇定[J].南京理工大学学报,2014,38(2):291-298.
投稿网址:http://njlgdxxb.paperonce.org
更新日期/Last Update: 2014-04-30