[1]杨赛,赵春霞.基于空间概率乘积核函数的图像分类算法[J].南京理工大学学报(自然科学版),2014,38(03):325.
 Yang Sai,Zhao Chunxia.Image classification algorithm based on spatial probability product kernel[J].Journal of Nanjing University of Science and Technology,2014,38(03):325.
点击复制

基于空间概率乘积核函数的图像分类算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年03期
页码:
325
栏目:
出版日期:
2014-06-30

文章信息/Info

Title:
Image classification algorithm based on spatial probability product kernel
作者:
杨赛赵春霞
南京理工大学 计算机科学与工程学院,江苏 南京 210094
Author(s):
Yang SaiZhao Chunxia
School of Computer Science and Engineering,NUST,Nanjing 210094,China
关键词:
空间概率乘积核函数图像分类词袋统计聚集算法统计特征信息空间信息Parzen窗方法概率密度分布核矩阵支持向量机
Keywords:
spatial probability product kernelimage classificationbagofwordsstatistic pooling methodstatistical informationspatial informationParzen window methodprobability distributionskernel matricessupport vector machines
分类号:
TP319.7
摘要:
针对词袋模型统计聚集算法忽略了编码矢量的其它统计特征信息及空间信息,并且只能与常用核函数相配合度量图像之间相似性的问题,该文提出一种基于空间概率乘积核函数的图像分类(SPPKBIG)算法。使用Parzen窗方法估计编码矢量所服从的概率密度分布,用来描述图像内容,使用空间概率乘积核函数构建图像之间的核矩阵,最后使用基于此核矩阵的支持向量机对图像进行分类。实验结果表明,SPPKBIC算法对15类场景数据集和MSRcv2数据集的平均分类正确率分别为84.1%和94.8%。
Abstract:
Aiming at the problems that the statistic pooling method using bagofwords(BoW) discards a lot of statistical and spatial information of coded vectors and only interacts with the standard kernel function to measure similarities of images,a spatial probability product kernel based image classification(SPPKBIC) algorithm is proposed here.The probability distributions of coded vectors are estimated by Parzen window method to describe images.The kernel matrices of images are calculated using the spatial probability product kernel function.Images are classified by support vector machines based on the kernel matrices.The experimental results show that the average classification accuracy of the SPPKBIG algorithm for scene 15 dataset and MSRcv2 dataset reach 84.1% and 94.8% respectively.

参考文献/References:

[1]张琳波,王春恒,肖柏华,等.基于Bagofphrases的图像表示方法[J].自动化学报,2012,38(1):46-55.
Zhang Linbo,Wang Chunheng,Xiao Baihua,et al.Image representation using Bagofphrases[J].Acta Automatica Sinica,2012,38(1):46-55.
[2]Ji Rongrong,Yao Hongxun,Liu Wei,et al.Taskdependent visualcodebook compression[J].IEEE Transactions on Image Processing,2012:21(4):2282-2293.
[3]Boureau Y L,Boch F,LeCun Y,et al.Learning midlevel features for recognition[A].Proceedings of the 23rd International Conference on Computer Vision and Pattern Recognition[C].San Francisco,CA,USA:IEEE Computer Society,2010:1-8.
[4]Liu Lingqiao,Wang Lei,Liu Xinwang.In defense of softassignment coding[A].Proceedings of the 13th International Conference on Computer Vision[C].Barcelona,Spain:IEEE Computer Society,2011:2486-2493.
[5]Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[A].Proceedings of the 19th International Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE Computer Society,2006:2169-2178.
[6]Cao Liujuan,Ji Rong,Gao Yue,et al.Weakly supervised sparse coding with geometric consistency pooling[A].Proceedings of the 25th International Conference on Computer Vision and Pattern Recognition[C].Providence,RI,USA:IEEE Computer Society,2012:3578-3585.
[7]Duchenne O,Joulin A,Ponce J.A graphmatching kernel for object categorization[A].Proceedings of the 13th International Conference on Computer Vision[C].Barcelona,Spain:IEEE Computer Society,2011:1792-1799.
[8]Yang Yi,Newsam S.Spatial pyramid cooccurrence for image classification[A].Proceedings of the 13th IEEE International Conference on Computer Vision[C].Barcelona,Spain:IEEE Computer Society,2011:1465-1472.
[9]Liu D,Hua Gang,Viola P,et al.Integrated feature selection and higherorder spatial feature extraction for object categorization[A].Proceedings of the 21st International Conference on Computer Vision and Pattern Recognition[C].Anchorage,AK,USA:IEEE Computer Society,2008:1-8.
[10]Feng Jiashi,Ni Bingbing,Tian Qi,et al.Geometric pnorm feature pooling for image classification[A].Proceedings of the 24th International Conference on Computer Vision and Pattern Recognition[C].Providence,RI,USA:IEEE Computer Society,2011:2609-2704.
[11]亓晓振,王庆.一种基于稀疏编码的多核学习图像分类方法[J].电子学报,2012,40(4):773-779.
Qi Xiaozhen,Wang Qing.An image classification approach based on sparse coding and multiple kernel learning[J].Acta Electronic Sinica,2012,40(4):773-779.
[12]van Gemert J C,Veenman C J,Smeulders A W M,et al.Visual word ambiguity[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(7):1271-1283.
[13]Mairal J,Bach F,Ponce J.Taskdriven dictionary learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(4):791-804.
[14]吴泽彬,韦志辉,孙乐,等.基于迭代加权L1正则化的高光谱混合像元分解[J].南京理工大学学报,2011,35(4):431-435.
Wu Zebin,Wei Zhihui,Sun Le,et al.Hyperspectral unmixing based on iterative weighted L1 regularization[J].Journal of Nanjing University of Science and Technology,2011,35(4):431-435.
[15]Yang Jianchao,Yu Kai,Gong Yihong,et al.Linear spatial pyramid matching using sparse coding for image classification[A].Proceedings of the 22nd International Conference on Computer Vision and Pattern Recognition[C].Miami,FL,USA:IEEE Computer Society,2009:1794-1801.
[16]Jia Yangqing,Huang Chang,Darrell T.Beyond spatial pyramids:Receptive field learning for pooled image features[A].Proceedings of the 25th International Conference on Computer Vision and Pattern Recognition[C].Providence,RI,USA:IEEE Computer Society,2012:3370-3377.
[17]Bishop C.Pattern recognition and machine learning[M].San Diego,CA,USA:Academic Press,2007.
[18]Jebara T,Kondor R,Howard A.Probability product kernels[J].Journal of Machine Learning Research,2004,5:819-844.
[19]Liu Yan,Perronnin F.A similarity measure between unordered vector sets with application to image categorization[A].Proceedings of the 21st International Conference on Computer Vision and Pattern Recognition[C].Anchorage,AK,USA:IEEE Computer Society,2008:9-17.
[20]Bosch A,Zisserman A,Munoz X.Scene classification using a hybrid generative/discriminative approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(4):712-727.
[21]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
Zhang Xuegong.Introduction to statistical learning theory and support vector machine[J].Acta Automatica Sinica,2000,26(1):32-42.
[22]Zhang Yimeng,Chen T.Efficient kernels for identifying unboundedorder spatial features[A].Proceedings of the International Conference on Computer Vision and Pattern Recognition[C].Miami,FL,USA:IEEE Computer Society,2009:1762-1769.
[23]Lowe D.Distinctive image features from scaleinvariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[24]Vedaldi A,Fulkerson B.An open and portable library of computer vision algorithm[A].Proceedings of the 18th Annual ACM International Conference on Multimedia[C].Firenze,Italy:ACM,2010:1469-1472.

相似文献/References:

[1]时中荣,王 胜,刘传才.基于L2,p矩阵范数稀疏表示的图像分类方法[J].南京理工大学学报(自然科学版),2017,41(01):80.[doi:10.14177/j.cnki.32-1397n.2017.41.01.011]
 Shi Zhongrong,Wang Sheng,Liu Chuancai.Sparse representation via L2,p norm for image classification[J].Journal of Nanjing University of Science and Technology,2017,41(03):80.[doi:10.14177/j.cnki.32-1397n.2017.41.01.011]

备注/Memo

备注/Memo:
收稿日期:2012-12-08修回日期:2013-04-07
基金项目:国家自然科学基金重大研究计划(9082030);国家自然科学基金青年项目(61103059)
作者简介:杨赛(1981-),女,博士生,主要研究方向:计算机视觉与机器学习,E-mail:yangsai166@126.com;通讯作者:赵春霞(1964-),女,教授,博士生导师,主要研究方向:机器视觉,E-mail:zhaochunxia@126.com。
引文格式:杨赛,赵春霞.基于空间概率乘积核函数的图像分类算法[J].南京理工大学学报,2014,38(3):325-331.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2014-06-30