[1]闫敏伦.新型变精度多粒化粗糙集模型[J].南京理工大学学报(自然科学版),2014,38(04):496-500.
 Yan Minlun.New rough set model:a variable precision multigranulation approach[J].Journal of Nanjing University of Science and Technology,2014,38(04):496-500.
点击复制

新型变精度多粒化粗糙集模型
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年04期
页码:
496-500
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
New rough set model:a variable precision multigranulation approach
作者:
闫敏伦12
1.江苏师范大学 连云港校区,江苏 连云港 222006; 2.连云港师范高等专科学校 数学与信息工程学院,江苏 连云港 222006
Author(s):
Yan Minlun12
1.Campus of Lianyungang,Jiangsu Normal University,Liangyungang 222006,China; 2.School of Mathematics and Information Engineering,Lianyungang Normal College, Liangyungang 222006,China
关键词:
变精度 多粒化 可协调 粗糙集 阈值 泛化 乐观粗糙集 悲观粗糙集
Keywords:
variable precision multigranulation adjustablity rough set threshold generalization optimistic rough sets pessimistic rough sets
分类号:
TP18
摘要:
为了解决现有的变精度乐观多粒化粗糙集要求宽松和悲观多粒化粗糙集要求过于严格的不足,该文提出了新型变精度多粒化粗糙集模型,即可协调的变精度多粒度粗糙集模型。该模型通过引入阈值,调节满足变精度约束条件的属性个数,使变精度多粒化粗糙集模型更具灵活性。分析了该新模型的相关性质并将其与经典模型进行了对比分析。通过理论分析,该文提出的新型变精度不仅继承了传统变精度多粒化粗糙集的相关性质,而且在一定环境下可以退化为传统变精度多粒度乐观和悲观粗糙集模型。研究表明,该文提出的模型是传统多粒度模型在应用背景下的有力扩展。
Abstract:
The variable precision optimistic multigranulation rough set model is loose while the variable precision pessimistic multigranulation rough set model is strict.To solve this problem,this paper proposes a new variable precision multigranulation rough set model,which is called adjustable variable precision multigranulation rough set.It introduces a threshold to control the number of attributes,which satisfy the variable precision constraint condition.This mechanism makes the model more flexibile.This paper shows the properties of this model and compares the model with classical variable precision multigranulation model.By theoretical analyses,this paper observes that,the new variable precision multigranulation rough set model not only inherits the properties of classical variable multigranulation rough set,but also can degenerate to classical variable multigranulation rough set with some limitations.The research shows that,the model proposed here is a powerful expansion of the classical multigranulation rough set in real world application.

参考文献/References:

[1] Pawlak Z.Rough sets—theoretical aspects of reasoning about data[M].Dordrecht:Kluwer Academic,1991.
[2]Luo Gongzhi,Yang Xibei.Limited dominance-based rough set model and knowledge reductions in incomplete decision system[J].Journal of Information Science and Engineering,2010,26(6):2199-2211.
[3]Hu Qinghua,Che Xunjian,Zhang Lei,et al.Rank entropy based decision trees for monotonic classification[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(11):2052-2064.
[4]杨习贝,杨静宇.邻域系统粗糙集模型[J].南京理工大学学报,2012,36(2):291-295.
Yang Xibei,Yang Jingyu.Rough set model based on neighborhood system[J].Journal of Nanjing University of Science and Technology,2012,36(2):291-295.
[5]王丽娟,杨习贝,杨静宇,等.基于多粒度理论的不完备决策规则获取[J].南京理工大学学报,2013,37(1):12-18.
Wang Lijuan,Yang Xibei,Yang Jingyu,et al.Incomplete decision rule acquisition based on multigranulation theory[J].Journal of Nanjing University of Science and Technology,2013,37(1):12-18.
[6]曾玲,何普彦,付敏.不完备区间值信息系统的粗糙集约简算法[J].南京理工大学学报,2013,37(4):524-529.
Zeng Ling,He Puyan,Fumin.Attribute reduction algorithm based on rough set in incomplete interval-valued information system[J].Journal of Nanjing University of Science and Technology,2013,37(4):524-529.
[7]Ziarko W.Variable precision rough set model[J].Journal of Computer and System Sciences,1993,46:39-59.
[8]Qian Yuhua,Liang Jiye.Rough set method based on multi-granulations[A].Proceedings of 5th IEEE International Conference on Cognitive Informatics[C].Beijing,China:IEEE,2006:297-304.
[9]Qian Yuhua,Liang Jiye,Dang Chuanyin.Incomplete multigranulation rough set[J].IEEE Transactions on Systems,Man and Cybernetics,Part A,2010,20:420-431.
[10]Qian Yuhua,Liang Jiye,Yao Yiyu,et al.MGRS:A multi-granulation rough set[J].Information Sciences,2010,180:949-970.
[11]Yang Xibei,Song Xiaoning,Dou Huili,et al.Multi-granulation rough set:from crisp to fuzzy case[J].Annals of Fuzzy Mathematics and Informatics,2011,1(1):55-70.
[12]Yang Xibei,Qi Yunsong,Song Xiaoning,et al.Test cost sensitive multigranulation rough set:model and minimal cost selection[J].Information Sciences,2013,250:184-199.
[13]Xu Weihua,Wang Qiaorong,Zhang Xiantao.Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space[J].International Journal of Fuzzy Systems,2011,14:246-259.
[14]Yang Xibei,Song Xiaoning,Chen Zehua,et al.On multigranulation rough sets in incomplete information system[J].International Journal of Machine Learning and Cybernetics,2012,3:223-232.
[15]Dou Huili,Yang Xibei,Fan Jiyue,et al.The model of variable precision multigranulation rough sets[A].Proceedings of the 7th International Conference,RSKT 2012[C].Chengdu,China:Springer Berlin Heidelberg,2012:465-473.

备注/Memo

备注/Memo:
收稿日期:2013-11-10 修回日期:2014-01-17
基金项目:国家自然科学基金(61100116); 江苏省自然科学基金(BK2011492); 江苏省教育科学“十二五”规划课题(D/2013/03/076)
作者简介:闫敏伦(1966-),男,副教授,主要研究方向:人工智能中的数学基础与计算智能,E-mail:haitouyan@163.com。
引文格式:闫敏伦.新型变精度多粒化粗糙集模型[J].南京理工大学学报,2014,38(4):496-500.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2014-08-31