[1]廖传柱,张 旦,江铭炎.基于ABC-PCNN模型的图像分割[J].南京理工大学学报(自然科学版),2014,38(04):558-565.
 Liao Chuanzhu,Zhang Dan,Jiang Mingyan.Image segmentation based on ABC-PCNN model[J].Journal of Nanjing University of Science and Technology,2014,38(04):558-565.
点击复制

基于ABC-PCNN模型的图像分割
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年04期
页码:
558-565
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
Image segmentation based on ABC-PCNN model
作者:
廖传柱1张 旦2江铭炎2
1.漳州职业技术学院 电子工程系,福建 漳州 363000; 2.山东大学 信息科学与工程学院,山东 济南 250100
Author(s):
Liao Chuanzhu1Zhang Dan2Jiang Mingyan3
1.Department of Electronic Engineering of Zhangzhou Institute of Technology,Zhangzhou 363000,China; 2.School of Information Science and Engineering,Shandong University,Jinan 250100,China
关键词:
脉冲耦合神经网络 人工蜂群算法 人工蜂群算法-脉冲耦合神经网络模型 乘积型交叉熵 图像分割
Keywords:
pulse coupled neural network artificial bee colony artificial bee colony-pulse coupled neural network product cross entropy image segmentation
分类号:
TP391.4
摘要:
为使标准脉冲耦合神经网络(Pulse coupled neural network,PCNN)模型在图像分割中能够自适应地调整模型参数与全局阈值,提高分割效果,该文提出一种基于人工蜂群(Artificial bee colony,ABC)算法改进的自适应PCNN模型,即人工蜂群算法-脉冲耦合神经网络(ABC-PCNN)模型; 提出了改进后的乘积型交叉熵函数,并利用ABC算法将此函数作为其适应度函数优化输出其连接系数和阈值。采用Lena图像和血细胞图像评估PCNN模型和ABC-PCNN模型的性能。实验结果表明:ABC-PCNN模型对图像的自适应分割效果优于PCNN模型。针对血细胞分割图像中存在的重叠区域,该文结合角点和质点坐标定位重叠区域的二次分割线得到最终分割图像,所提算法高效且能得到较好的分割结果。
Abstract:
In order to adjust the model parameters and the global threshold for image segmentation,an improved pulse coupled neural network(PCNN)model based on artificial bee colony(ABC)algorithm,namely ABC-PCNN,is proposed here.It combines a new criterion of product cross entropy with the standard simplified PCNN model.The product cross entropy is used as the fitness function to optimize the connection output coefficient and threshold value by the ABC algorithm.Lena image and blood cell image are used to evaluate the PCNN model and the ABC-PCNN model respectively.The experimental results show that the adaptive image segmentation by the ABC-PCNN model outperforms that by the PCNN model.As the overlapping areas need secondary segmentation in the segmented blood cell image,corners and center coordinates are used to locate the dividing line and to get the final image segmentation.The method proposed here is effective and can obtain better segmentation results.

参考文献/References:

[1] Chacon M M I,Mendoza P J A.A PCNN-FCM time series classifier for texture segmentation[A].2011 Annual Meeting of the North American Fuzzy Information Processing Society[C].El Paso,Texas,USA:IEEE,2011:1-6.
[2]Cao Jie,Wu Di.Face recognition based on pulse coupled neural network[A].2009 International Conference on Information Engineering and Computer Science[C].Wuhan,China:IEEE,2009:1-4.
[3]石美红,张军英,李永刚.基于差别特征的文理图像识别研究[J].计算机应用,2004,24(1):66-69.
Shi Meihong,Zhang Junying,Li Yonggang.Texture recognition with discriminating features[J].Computer Applications,2004,24(1):66-69.
[4]Fan Huajun,Zhou Dongming,Nie Rencan,et al.Target face detection using pulse coupled neural network and skin color model[A].2012 International Conference on Computer Science and Service System[C].Nanjing,China:IEEE,2012:2185-2188.
[5]杨赛,赵春霞.基于空间概率乘积核函数的图像分类算法[J].南京理工大学学报,2014,38(3):325-328.
Yan Sai,Zhao Chunxia.Image classification algorithm based on spatial probability product kernel[J].Journal of Nanjing University of Science and Technology,2014,38(3):325-328.
[6]Micheli-Tzanakou E,Sheikh H,Zhu B.Neural networks and blood cell identification[J].Journal of Medical Systems,1997,21(4):201-210.
[7]Wei Shuo,Qu Hong,Hou Mengshu.Automatic image segmentation based on PCNN with adaptive threshold time constant[J].Neurocomputing,2011,74(9):1485-1491.
[8]Wang Haiqing,Ji Changying,Gu Baoxing,et al.A simplified pulse-coupled neural network for cucumber image segmentation[A].2010 International Conference on Computational and Information Sciences(ICCIS)[C].Chengdu,China:IEEE,2010:1053-1057.
[9]Chen Yuli,Park Sung-Kee,Ma Yide,et al.A new automatic parameter setting method of a simplified PCNN for image segmentation[J].IEEE Transactions on Neural Networks,2011,22(6):880-892.
[10]陈沅涛,徐蔚鸿,吴佳英,等.基于增量学习向量SVM方法的图像分割应用[J].南京理工大学学报,2014,38(1):6-11.
Chen Yuantao,Xu Weihong,Wu Guiying,et al.Image segmentation application based on incremental learning vector SVM algorithm[J].Journal of Nanjing University of Science and Technology,2014,38(1):6-11.
[11]汪天福,郑昌琼,李德玉.基于神经网络的超声医学图像自动分割[J].电子科技大学学报,1997,26(4):366-368.
Wang Tianfu,Zhen Changqiong,Li Deyu.Neural network based ultrasonic medical image automatic segmentation[J].Journal of UEST of China,1997,26(4):366-368.
[12]石美红,付蓉,毛江辉,等.一种自适应织物疵点图像分割的方法[J].东华大学学报,2007,33(6):743-750.
Shi Meihong,Fu Rong,Mao Jianghui,et al.An adaptive fabric defect segmentation method[J].Journal of DONG-HUA University,2007,33(6):743-750.
[13]顾晓东,张立明,余道衡.用无需选取参数的Unit-linking PCNN进行自动图像分割[J].电路与系统学报,2007,12(6):54-59.
Gu Xiaodong,Zhang Liming,Yu Daoheng.Automatic image segmentation using unit-linking PCNN without choosing parameters[J].Journal of Circuits and Systems,2007,12(6):54-59.
[14]马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51.
Ma Yide,Dai Ruolan,Li Lian.Automated image segmentation using pulse coupled neural networks and image's entropy[J].Journal of China Institute of Communications,2002,23(1):46-51.
[15]Chen Lixue,Gu Xiaodong.PCNN-based image segmentation with contoured product mutual information criterion[A].2012 IEEE International Conference on Information Science and Technology[C].Hebei,China:IEEE,2012:9-14.
[16]Karaboga D,Akay B.A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Computation,2009,214:108-132.
[17]Karaboga D,Akay B.A survey:algorithms simulating bee swarm intelligence[J].Artificial Intelligence Review,2009,31(4):61-85.
[18]吴成茂.一种新信息熵定义及其在图像分割中的应用[J].西安邮电学院学报,2009,14(1):72-79.
Wu Chengmao.A new information entropy definition and its application in image segmentation[J].Journal of Xi'an University of Post and Telecommunications,2009,14(1):72-79.
[19]He Xiaochen,Yung N H C.Corner detector based on global and local curvature properties[J].Optical Engineering,2008,47(5):57-61.
[20]张芹,侯德文.形态学分水岭算法在粘连图像分割中的应用[J].微型计算机与应用,2012,31(9):44-46.
Zhang Qin,Hou Dewen.Application of morphology-watershed segmentation of adhesion images[J].Microcomputer & Its Applications,2012,31(9):44-46.

备注/Memo

备注/Memo:
收稿日期:2014-05-24 修回日期:2014-07-30
基金项目:国家自然科学基金(61201370); 山东省自主创新成果转化重大专项((No.2012CX30202)
作者简介:廖传柱(1965-),男,副教授,主要研究方向:电子信息处理、电路设计等,E-mail:zzylcz@126.com。
引文格式:廖传柱,张旦,江铭炎.基于ABC-PCNN模型的图像分割[J].南京理工大学学报,2014,38(4):558-565.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2014-08-31