[1]聂吾希斌 K A,普列达尔斯基A V,沈 凯,等.一种具有冗余趋势项的飞行器自组织算法[J].南京理工大学学报(自然科学版),2014,38(05):602-607.
 Neusypin K A,Proletarsky A V,Shen Kai,et al.Aircraft self-organization algorithm with redundant trend[J].Journal of Nanjing University of Science and Technology,2014,38(05):602-607.
点击复制

一种具有冗余趋势项的飞行器自组织算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年05期
页码:
602-607
栏目:
出版日期:
2014-10-29

文章信息/Info

Title:
Aircraft self-organization algorithm with redundant trend
作者:
聂吾希斌 K A1普列达尔斯基A V1沈 凯12刘荣忠2郭 锐2
1.莫斯科鲍曼国立技术大学 信息与控制系,俄罗斯 莫斯科 105005; 2.南京理工大学 机械工程学院,江苏 南京 210094
Author(s):
Neusypin K A1Proletarsky A V1Shen Kai12Liu Rongzhong2Guo Rui2
1.Department of Informatics and Control Systems,Bauman Moscow State Technical University, Moscow 105005,Russia; 2.School of Mechanical Engineering,NUST,Nanjing 210094,China
关键词:
飞行器 导航系统 自组织算法 冗余趋势项 自组织选择判定准则
Keywords:
aircrafts navigation system self-organization algorithm redundant trends self-organization selection criteria
分类号:
V249.32; TP273
摘要:
为了提高导航系统精度,该文采用卡尔曼滤波算法和其他预测算法,在惯性导航系统基础上建立了自主导航系统误差补偿模型。在测量信息部分缺失的情况下,根据导航系统误差的理想数学模型特点,选择线性函数、三角函数等作为基函数,应用自组织选择判定准则等,构建了具有冗余趋势项的自组织算法。开展了基于理想数学模型的仿真分析和基于试验平台的试验研究。结果表明,具有冗余趋势项的自组织算法保证了较高的误差预估精度,可以满足实时性要求。
Abstract:
In order to improve the accuracy of aircraft navigation systems,one error compensating model for autonomous navigation systems is established based upon inertial navigation systems by applying the Kalman filtering algorithm and other prediction algorithms.In the case of the absence of partial measurement information,linear and harmonic functions are proposed to be selected as basic functions according to characteristics of mathematic error models of navigation systems.A novel adaptive self-organization measuring complex is built on the basis of self-organization algorithm with redundant trends by utilizing some self-organization selection criteria.The mathematic simulation and real test based on actual navigation testing systems are executed.The analysis results show that self-organization algorithm with redundant trends can secure the higher prediction accuracy of navigation system errors and meet real-time requirements.

参考文献/References:

[1] Neusypin K A,Proletarsky A V,Vlasov S V.Accuracy increase methods of the autonomous navigation systems[J].Automation and Modern Technologies,2011(2):14-18.
[2]Proletarsky A V,Neusypin K A.Methods for correction of navigation systems and complexes of flying vehicles[J].Journal of Bauman Moscow State Technical University,2012(5):216-223.
[3]Neusypin K A,Proletarsky A V,Vlasov S V.The accuracy improvement of self-organizing automation system[J].Instrumentation and Control Systems,2010,3:68-74.
[4]Proletarsky A V,Neusipin K A,Fang Ke.The methods of compensating navigation system of unmanned aircraft[J].Automation and Modern Technology,2013(2):30-34.
[5]Brown R G.Integrated navigation systems and Kalman filtering:a perspective[J].Navigation,1972-1973,19(4):355-362.
[6]Koifman M,Bar-ltzhack I,Mernav S.Dynamics aided inertial navigation system[R].AIAA-95-3195-CP.
[7]Carvalho H,Moral P D,Salut G.Optimal nonlinear filtering in GPS/INS integration[J].IEEE Trans on Aerospace and Electronic Systems,1997,33(3):835-850.
[8]Ivakhnenko A G,Koppa Yu V,Min W S.Polynomial and logical theory of dynamic systems(pt.1)[J].Sov Automat Contr,1970,3(3):1-13.
[9]Ivakhnenko A G.Polynomial theory of complex systems[J].IEEE Trans on Systems,Man and Cybernetics,1971,SMC1(4):364-378.
[10]Neusipin K A,Fang Ke.The research on modeling algorithm using self-organization method in aircraft intelligent control system[J].Journal of Projectiles Rocket Missiles and Guidance,2010(5):39-42.
[11]Duffy J J,Franklin M A.A learning identification algorithm and its application to environmental systems[J].IEEE Transactions on Systems,Man and Cybernetics,1975,SMC5(5):226-240.
[12] Ikeda S M,Ochial M,Sawaragi Y.Sequential GMDH algorithm and its application to river flow prediction[J].IEEE Transactions on Systems,Man and Cybernetics,1976,SMC6(7):473-479.
[13]Sawaragi Y,Soelda T,Tamura H.Statistical prediction of air pollution levels using non-physical models[J].Automatica,1979,15(4):441-451.
[14]Fang Ke,Proletarsky A V,Neusipin K A.Selection of measured signals in the navigation measuring complex[J].Journal of Measurement Science and Instrumenta-tion,2011,2:346-348.
[15]Neusypin K A,Proletarsky A V.Development of a reduced self-organization algorithm for navigation systems correction[J].Scientific Review,2013(9):333-337.
[16]Neusypin K A,Proletarskiy A V,Vays Yu L,et al.Selection criteria ensemble formation of the self-organization compact algorithm[J].Automation and Modern Technologies,2012(4):14-16.
[17]Neusypin K A,Shen Kai.Modification of nonlinear Kalman filtering by utilizing genetic algorithms[J].Automation and Modern Technologies,2014(5):9-11.

备注/Memo

备注/Memo:
收稿日期:2013-11-11 修回日期:2014-06-17
基金项目:国家自然科学基金(11102088)
作者简介:聂吾希斌 K A(1960-),男,科学技术博士,教授,主要研究方向:智能控制系统,E-mail:neysipin@mail.ru; 通讯作者:郭锐(1980-),男,博士,副教授,主要研究方向:弹药灵巧化与智能化,E-mail:guoruid@163.com; 沈凯(1990-),男,博士生,主要研究方向:飞行器智能控制系统、卡尔曼滤波算法和自组织算法等,E-mail:shenkaichn@163.com。
引文格式:聂吾希斌 K A,普列达尔斯基A V,沈 凯,等.一种具有冗余趋势项的飞行器自组织算法[J].南京理工大学学报,2014,38(5):602-607.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2014-10-31