[1]赵晓西,李永池.手性石墨烯薄膜拉伸力学性能分子动力学研究[J].南京理工大学学报(自然科学版),2014,38(05):690-694.
 Zhao Xiaoxi,Li Yongchi.Molecular dynamic simulation of tensile mechanical properties of chiral graphene sheet[J].Journal of Nanjing University of Science and Technology,2014,38(05):690-694.
点击复制

手性石墨烯薄膜拉伸力学性能分子动力学研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年05期
页码:
690-694
栏目:
出版日期:
2014-10-29

文章信息/Info

Title:
Molecular dynamic simulation of tensile mechanical properties of chiral graphene sheet
作者:
赵晓西12李永池1
1.中国科学技术大学 近代力学系,安徽 合肥 230026; 2.郑州大学 水利与环境学院,河南 郑州 450001
Author(s):
Zhao Xiaoxi12Li Yongchi1
1.Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China; 2.School of Water and Environmental Engineering,Zhengzhou University,Zhengzhou 450001,China
关键词:
手性石墨烯 拉伸力学性能 分子动力学
Keywords:
chiral graphene tensile mechanical properties molecular dynamics
分类号:
TB332
摘要:
基于分子动力学方法,用Tersoff势函数描述碳原子性质,研究了手性取向对石墨烯薄膜拉伸力学性能的影响。通过构建不同手性的石墨烯薄膜模型,在周期性边界条件下采用NVT系综,以变形方式分别对不同手性的石墨烯薄膜施加均匀应变,模拟了拉伸变形条件下手性石墨烯薄膜的破坏过程,得到了相应的应力-应变关系以及拉伸破坏形态。结果表明,不同的手性取向对石墨烯薄膜的杨氏模量影响不明显,拉伸强度随着手性角度的增大先迅速减小再逐渐增大,其拉伸极限应变随着手性角度的增大整体呈减小趋势。
Abstract:
The tensile mechanical properties of graphene sheets in different chiral orientations are investigated based on the molecular dynamics method with Tersoff potential.The failure process of chiral graphene sheets under uniform tension deformation is simulated in the deform mode with applying the periodic boundary conditions and the NVT ensemble.The stress-strain relationships and tensile failure modes of chiral graphene sheets are obtained.The results show that the chiral angle of graphene has little effect on its Young's modulus,tensile strength is reduced quickly at first and then increased gradually with the increase of the chiral angle of graphene,and the ultimate tensile strain is reduced gradually with the increase of the chiral angle of graphene.

参考文献/References:

[1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2]Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
[3]Grantab R,Shenoy V B,Ruoff R S.Anomalous strength characteristics of tilt grain boundaries in graphene[J].Science,2010,330(6006):946-948.
[4]Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[5]Kim K S,Zhao Y,Jang H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706-710.
[6]Ramanathan T,Abdala A A,Stankovich S,et al.Functionalized graphene sheets for polymer nanocomposites[J].Nature Nanotechnology,2008,3(6):327-331.
[7]Stankovich S,Dikin D A,Dommett G H,et al.Graphene-based composite materials[J].Nature,2006,442(7100):282-286.
[8]徐秀娟,秦金贵,李振.石墨烯研究进展[J].化学进展,2009,21(12):2559-2567. Xu Xiujuan,Qin Jingui,Li Zhen.Research advances of graphene[J].Progress in Chemistry,2009,21(12):2559-2567.
[9]莫尊理,韩玮玮,郭瑞斌,等.石墨烯分子模拟研究进展[J].材料导报,2011,25(9):122-125. Mo Zunli,Han Weiwei,Guo Ruibin,et al.Graphene molecular simulation research progress[J].Materials Review,2011,25(9):122-125.
[10]Tao C,Jaio L,Yazyev O V,et al.Spatially resolving edge ststes of chiral graphene nanoribbons[J].Nature Physics,2011,7:616-620.
[11]朱宏伟,徐志平,谢丹.石墨烯—结构、制备方法与性能表征[M].北京:清华大学出版社,2011.
[12]韩同伟,贺鹏飞,骆英,等.石墨烯力学性能研究进展[J].力学进展,2011,41(3):279-293. Han Tongwei,He Pengfei,Luo Ying,et al.Research progress in the mechanical properties of graphene[J].Advances in Mechanics,2011,41(3):279-293.
[13]Liu F,Ming P M,Li J.Ab initio calculation of ideal strength and phonon instability of graphene under tension[J].Physical Review B,2007,76(6):064120.
[14]Reddy C D,Rajendran S,Liew K M.Equilibrium configuration and continuum elastic properties of finite sized grapheme[J].Nanotechnology,2006,17(3):864-870.
[15]Huang Y,Wu J,Hwang K C.Thickness of graphene and single-wall carbon nanotubes[J].Physical Review B,2006,74(24):245413.
[16]Konstantinova E,Dantas S O,Barone P.Electronic and elastic properties of two-dimensional carbon planes[J].Physical Review B,2006,74(3):035417.
[17]Bu H,Chen Y,Zou M,et al.Atomistic simulations of mechanical properties of graphene nanoribbons[J].Physics Letters A,2009,373(37):3359-3362.
[18]Ni Z,Bu H,Zou M,et al.Anisotropic mechanical properties of grapheme sheets from molecular dynamics[J].Physica B,2010,405(5):1301-1306.
[19]韩强,黄凌燕.石墨烯薄膜拉伸性能的分子动力学模拟[J].华南理工大学学报,2012,40(2):29-34. Han Qiang,Huang Lingyan.Molecular dynamics simulation of tensile properties of graphene sheets[J].Journal of South China University of Technology,2012,40(2):29-34.
[20]韩同伟,贺鹏飞,王健,等.石墨烯拉伸力学性能温度相关性的数值模拟[J].同济大学学报,2009,37(12):1638-1641. Han Tongwei,He Pengfei,Wang Jian,et al.Numerical simulation of temperature dependence of tensile mechanical properties for single graphene sheet[J].Journal of Tongji University,2009,37(12):1638-1641.
[21] 杨晓东,贺鹏飞,吴艾辉,等.石墨烯纳米压痕试验的分子动力学模拟[J].中国科学(物理学 力学 天文学),2009,40(3):353-360. Yang Xiaodong,He Pengfei,Wu Aihui,et al.Molecular dynamics simulation of nanoindentation for graphene[J].Scientia Sinica Phys Mech & Astron,2009,40(3):353-360.
[22]Tersoff J.Modeling solid-state chemistry:Interatomic potentials for multicomponent systems[J].Physical Review B,1989,39(8):5566-5568.
[23]Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
[24]Allen M P,Tildesley D J.Computer simulation of liquids[M].Oxford,UK:Clarendon Press,1987.

备注/Memo

备注/Memo:
收稿日期:2013-06-06 修回日期:2013-09-17
基金项目:国家自然科学基金(51209101)
作者简介:赵晓西(1972-),女,讲师,博士生,主要研究方向:计算力学与结构力学,E-mail:zhaox09@mail.ustc.edu.cn; xxzhao168@zzu.edu.cn; 通讯作者:李永池(1941-),男,教授,博士生导师,主要研究方向:材料及结构的动态本构关系,损伤和破坏规律等,E-mail:ycli@ustc.edu.cn。
引文格式:赵晓西,李永池.手性石墨烯薄膜拉伸力学性能分子动力学研究[J].南京理工大学学报,2014,38(5):690-694.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2014-10-31