[1]杨青川,臧传霞,李天雷,等.基于帕斯维尔定理的频域积分盲源分离算法[J].南京理工大学学报(自然科学版),2015,39(01):102-107.
 Yang Qingchuan,Zang Chuanxia,Li Tianlei,et al.Frequency-domain blind separation of convolutive mixtures based on Parseval's theorem[J].Journal of Nanjing University of Science and Technology,2015,39(01):102-107.
点击复制

基于帕斯维尔定理的频域积分盲源分离算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
39卷
期数:
2015年01期
页码:
102-107
栏目:
出版日期:
2015-02-28

文章信息/Info

Title:
Frequency-domain blind separation of convolutive mixtures based on Parseval's theorem
作者:
杨青川1臧传霞1李天雷2胡玉兰1梅铁民1
1.沈阳理工大学 信息科学与工程学院,辽宁 沈阳 110168; 2.中航工业沈阳发动机设计研究所,辽宁 沈阳 110015
Author(s):
Yang Qingchuan1Zang Chuanxia1Li Tianlei2Hu Yulan1Mei Tiemin1
1.School of Information Science and Engineering,Shenyang Ligong University,Shenyang 110168,China; 2.AVIC Shenyang Aircraft Engine Design Institute,Shenyang 110015,China
关键词:
卷积混合 盲源分离 双最小均方 帕斯维尔定理 频域积分算法 快速傅里叶变换
Keywords:
convolutive mixing blind source separation double-least-mean-squeres Parseval's theorem frequency-integration algorithm fast Fourier transform
分类号:
TN911.72
摘要:
为了克服卷积混合信号盲源分离双最小均方(Double least mean squeres,Double-LMS)算法在分离滤波器过长时计算量过大的问题,借助于傅里叶变换理论中的帕斯维尔定理,将其转化为频域积分算法。频域积分算法可以利用快速傅里叶变换实现,具有较高的计算效率,可以克服当分离滤波器过长时原算法效率低下的问题。仿真结果表明:新算法在保持了Double-LMS算法良好分离性能的基础上,降低了原算法的复杂度,提高了计算效率。
Abstract:
To improve the performance of the blind source separation double least mean squeres(Double-LMS)algorithm which is computationally inefficient if the separation filters are too long,the Double-LMS is converted to a frequency-integration algorithm with the help of Parseval's theorem.Fast Fourier transform is exploited to implement the proposed algorithm to overcome the low computational efficiency problem due to the too long separation filters.Simulations show that the new algorithm works as well as the Double-LMS algorithm and has higher computation efficiency.

参考文献/References:

[1] 付卫红,杨小牛,曾兴雯,等.适用于通信侦察的信号盲分离算法[J].南京理工大学学报,2008,32(2):189-194.
Fu Weihong,Yang Xiaoniu,Zeng Xingwen,et al.Signal blind separation algorithm applying to communication reconnaissance[J].Journal of Nanjing University of Science and Technology,2008,32(2):189-194.
[2]Amari S,Cichocki A.Adaptive blind signal processing-neural network approaches[J].Proceedings of the IEEE,1998,86(10):2026-2048.
[3]Comon P.Independent component analysis,a new concept?[J].Signal Processing,1994,36(3):287-314.
[4]Hyvärinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
[5]Belouchrani A,Abed-Meraim K,Cardoso J F,et al.A blind source separation technique using second-order statistics[J].IEEE Transactions on Signal Processing,1997,45(2):434-443.
[6]Tong L,Liu R,Soon V C,et al.Indeterminacy and identifiability of blind identification[J].IEEE Transactions on Circuits and Systems,1991,38(5):499-509.
[7]Mei T,Mertins A,Yin F.On the generalization of blind source separation algorithms from instantaneous to convolutive mixtures[A].IEEE Proceedings of Sensor Array and Multichannel Signal Processing Workshop[C].Shanghai,China:IEEE Computer Society,2008:482-486.
[8]Kawamoto M,Matsuoka K,Ohnishi N.A method of blind separation for convolved non-stationary signals[J].Neurocomputing,1998,22(1-3):157-171.
[9]Almeida M S C,Almeida L B.Nonlinear separation of show-through image mixtures using a physical model trained with ICA[J].Signal Processing,2012,92(4):872-884.
[10]Parra L,Spence C.Convotulive blind separation of non-stationary sources[J].IEEE Transactions on Speech and Audio Processing,2000,8(3):320-327.
[11]Smaragdis P.Blind separation of convolved mixtures in the frequency domain[J].Neurocomputing,1998,22(1-3):21-34.
[12]Mei T,Yin F.Blind separation of convolutive mixtures by decorrelation[J].Signal Processing,2004,84(12):2297-2313.
[13]Mei T,Xi J,Yin F,et al.Blind source separation based on time-domain optimization of a frequency-domain independence criterion[J].IEEE Transactions on Audio,Speech and Language Processing,2006,14(6):2075-2085.
[14]Yin F,Mei T,Wang J.Blind-source separation based on decorrelation and nonstationarity[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2007,54(5):1150-1158.
[15]梅铁民.盲源信号分离时域与频域算法研究[D].大连:大连理工大学电子与信息工程学院,2006.
[16]Mei T,Yin F,Wang J.Blind source separation based on cumulants with time and frequency non-properties[J].IEEE Transactions on Audio,Speech,and Language Processing,2009,17(6):1099-1108.
[17]Ahmad R,Khong A W H,Hasan M K,et al.An extended normalized multichannel FLMS algorithm for blind channel identification[A].Proceedings of European Signal Processing Conference[C].Florence,Italy:Eurasip,2006.
[18]Allen J B,Berkley D A.Image method for efficiently simulating small-room acoustics[J].Journal of the Acoustical Society of America,1979,65(4):943-950.

相似文献/References:

[1]付卫红,杨小牛,刘乃安,等.基于阵列结构的盲分离算法[J].南京理工大学学报(自然科学版),2009,(02):168.
 FU Wei-hong,YANG Xiao-niu,LIU Nai-an,et al.Novel Blind Source Separation Algorithm Based on Array Constructure[J].Journal of Nanjing University of Science and Technology,2009,(01):168.
[2]付卫红,杨小牛,曾兴雯,等.适用于通信侦察的信号盲分离算法[J].南京理工大学学报(自然科学版),2008,(02):189.
 FU Wei-hong,YANG Xiao-niu,ZENG Xing-wen,et al.Signal Blind Separation Algorithm Applying to Communication Reconnaissance[J].Journal of Nanjing University of Science and Technology,2008,(01):189.

备注/Memo

备注/Memo:
收稿日期:2014-08-17 修回日期:2014-12-06
基金项目:国家自然科学基金(61373089)
作者简介:杨青川(1958-),男,副教授,主要研究方向:信号处理,E-mail:cls06808@163.com; 通讯作者:梅铁民(1964-),男,博士,教授,主要研究方向:信号处理,E-mail:meitiemin@163.com。
引文格式:杨青川,臧传霞,李天雷,等.基于帕斯维尔定理的频域积分盲源分离算法[J].南京理工大学学报,2015,39(1):102-107.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2015-02-28