[1]汤永利,李伟杰,于金霞,等.基于改进D-S证据理论的网络安全态势 评估方法[J].南京理工大学学报(自然科学版),2015,39(04):405.
 Tang Yongli,Li Weijie,Yu Jinxia,et al.Network security situational assessment method based on improved D-S evidence theory[J].Journal of Nanjing University of Science and Technology,2015,39(04):405.
点击复制

基于改进D-S证据理论的网络安全态势 评估方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
39卷
期数:
2015年04期
页码:
405
栏目:
出版日期:
2015-08-31

文章信息/Info

Title:
Network security situational assessment method based on improved D-S evidence theory
作者:
汤永利李伟杰于金霞闫玺玺
河南理工大学 计算机科学与技术学院 河南 焦作 454000
Author(s):
Tang YongliLi WeijieYu JinxiaYan Xixi
School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China
关键词:
网络安全态势评估 反向传播神经网络 D-S证据理论 基本概率分配 态势识别率
Keywords:
network security situational assessment back propagation neural network D-S evidence theory basic probability assignation situational recognition rate
分类号:
TP393.08
摘要:
网络安全态势评估是信息安全领域的研究热点问题。为了解决现有评估中过度依赖专家经验问题,提出了一种基于改进D-S证据理论的网络安全态势评估方法。该方法融合多源态势信息,利用基于遗传算法优化反向传播(Back propagation,BP)神经网络来获得D-S证据理论的基本概率分配(Basic probability assignation,BPA),由D-S证据理论对BPA依次进行合成计算,弱化人为因素对BPA的影响,提高BPA的预测精度和网络安全态势识别率。通过真实网络环境的实验验证了该方法在网络安全态势评估中的可行性和有效性。
Abstract:
It is a hot issue for network security situational assessment in the field of information security.In order to solve the problem of over-reliance on expert experience,it proposes a security situational assessment method based on the improved D-S evidence theory.For this method,it fuses multi-source situation information and uses the back propagation(BP)neural network based on Genetic Algorithm to obtain the basic probability assignation(BPA)of the D-S evidence theory.The D-S evidence theory is adopted to integrate the BPA in turn,weaken the interference of artificial factors on BPA,and improve the BPA forecasting accuracy and the situational recognition rate of network security situation.Tests with a real network environment show that this method effectively improves the network security situational assessment.

参考文献/References:

[1] Bass T.Intrusion systems and multi-sensor data fusion.creating cyberspace situational awareness[J].Communications of the ACM,2000,43(4):99-105.
[2]Holsopple J,Yang S J.FuSIA:Future situation and impact awareness[A].Proceedings of the 11th International Conference on Information Fusion[C].Cologne,Germany:IEEE,2008:1-8.
[3]Holsopple J,Sudit M,Nusinov M,et al.Enhancing situation awareness via automated situation assessment[J].IEEE Communications Magazine,2010,48(3):146-152.
[4]Liu Z,Li S J,He J,et al.Complex network security analysis based on attack graph model[A].2012 Instrumentation,Measurement,Computer,Communication and Control International Conference[C].Harbin,China:IEEE Computer Society,2012:183-186.
[5]Zhang S,Yao S,Ye X,et al.A network security situation analysis framework based on information fusion[A].Proceedings of 6th IEEE Joint International Information Technology and Artificial Intelligence Conference[C].Chongqing,China:IEEE Computer Society,2011:362-332.
[6]龚正虎,卓莹.网络态势感知研究[J].软件学报,2010,21(7):1605-1619.
Gong Zhenghu,Zhuo Ying.Research on cyber space situational awareness[J].Journal of Software,2010,21(7):1605-1619.
[7]韦勇,连一峰,冯登国.基于信息融合的网络安全态势评估模型[J].计算机研究与发展,2009,46(3):353-362.
Wei Yong,Lian Yifeng,Feng Dengguo.A network security situational awareness model based on information fusion[J].Journal of Computer Research and Development,2009,46(3):353-362.
[8]吴迪,连一峰,陈恺,等.一种基于攻击图的安全威胁识别和分析方法[J].计算机学报,2012,35(9):1939-1950.
Wu Di,Lian Yifeng,Chen Kai,et al.A security threats identification and analysis method based on attack graph[J].Chinese Journal of Computers,2012,35(9):1939-1950.
[9]杨雅辉,黄海珍,沈晴霓,等.基于增量式GHSOM神经网络模型的入侵检测研究[J].计算机学报,2014,37(5):1216-1224.
Yang Yahui,Huang Haizhen,Shen Qingni,et al.Research on intrusion detection based on incremental GHSOM[J].Chinese Journal of Computers,2014,37(5):1216-1224.
[10]赵秋月,左万利,田中生,等.一种基于改进D-S证据理论的信任关系强度评估方法研究[J].计算机学报,2014,37(4):874-883.
Zhao Qiuyue,Zuo Wanli,Tian Zhongsheng,et al.A method for assessment of trust relationship strength based on the improved D-S evidence theory[J].Chinese Journal of Computers,2014,37(4):874-883.
[11]陈秀真,郑庆华,管晓宏.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897.
Chen Xiuzhen,Zheng Qinghua,Guan Xiaohong,et al.Quantitative hierarchical threat evaluation model for network security[J].Journal of Software,2006,17(4):885-897.
[12]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2005.
Yan Pingfan,Zhang Changshui,et al.Artificial neural networks and simulated evolutionary computation[M].Beijing:Tsinghua University Press,2005.
[13]陈得宝,赵春霞.基于改进GA的WRBF神经网络设计与应用[J].南京理工大学学报,2007,31(3):370-374.
Chen Debao,Zhao Chunxia.Design and application of WRBF neural network based on improved GA[J].Journal of Nanjing University of Science and Technology,2007,31(3):370-374.
[14]谢丽霞,王亚超,于巾博.基于神经网络的网络安全态势感知[J].清华大学学报,2013,53(12):1750-1760.
Xie Lixia,Wang Yachao,Yu Jinbo.Network security situation awareness based on neural networks[J].Journal of Tsinghua University,2013,53(12):1750-1760.

相似文献/References:

[1]陈亮,张宏,刘凤玉,等.基于反向传播神经网络的Ad Hoc网络PID拥塞控制[J].南京理工大学学报(自然科学版),2010,(05):628.
 CHEN Liang,ZHANG Hong,LIU Feng-yu.PID Congestion Control Based on Back Propagation Neural Network in Ad Hoc Network[J].Journal of Nanjing University of Science and Technology,2010,(04):628.
[2]赵英,崔福义,郭亮,等.基于BP神经网络的天津于桥水库COD_(Mn)预测研究[J].南京理工大学学报(自然科学版),2008,(03):376.
 ZHAO Ying,CUI Fu-yi,GUO Liang,et al.CODMn Forecast Based on BP Neural Network at Yuqiao Reservoir in Tianjin[J].Journal of Nanjing University of Science and Technology,2008,(04):376.
[3]陈 桂,陈耀忠,林 健,等.机器人逆运动学的微分进化与粒子群优化 BP神经网络求解[J].南京理工大学学报(自然科学版),2014,38(06):763.
 Chen Gui,Chen Yaozhong,Lin Jian,et al.Solving robot inverse kinematics based on differential evolution and particle swarm optimization BP neural network[J].Journal of Nanjing University of Science and Technology,2014,38(04):763.
[4]孙新程,孔建寿,刘 钊.基于核主成分分析与改进神经网络的电力负荷中期预测模型[J].南京理工大学学报(自然科学版),2018,42(03):259.[doi:10.14177/j.cnki.32-1397n.2018.42.03.001]
 Sun Xincheng,Kong Jianshou,Liu Zhao.Middle-term power load forecasting model based on kernel principalcomponent analysis and improved neural network[J].Journal of Nanjing University of Science and Technology,2018,42(04):259.[doi:10.14177/j.cnki.32-1397n.2018.42.03.001]

备注/Memo

备注/Memo:
收稿日期:2015-05-04 修回日期:2015-06-22
基金项目:国家自然科学基金(61300216); 河南省科技攻关重点项目(122102310309); 河南省科技厅基础与前沿技术项目(142300410147); 河南理工大学博士基金(B2011-058)
作者简介:汤永利(1972-),男,博士,副教授,主要研究方向:信息安全,密码学,E-mail:yltang@hpu.edu.cn; 通讯作者:李伟杰(1986-),男,硕士研究生,主要研究方向:信息安全,E-mail:cslwj2014@163.com。
引文格式:汤永利,李伟杰,于金霞,等.基于改进D-S证据理论的网络安全态势评估方法[J].南京理工大学学报,2015,39(4):405-411.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2015-08-31