[1]汪洁洁,许春根,徐 磊,等.标准模型下格上固定长度消息签名方案[J].南京理工大学学报(自然科学版),2015,39(05):566.
 Wang Jiejie,Xu Chungen,Xu Lei,et al.Lattice-based signature scheme for constant-sized message in standard model[J].Journal of Nanjing University of Science and Technology,2015,39(05):566.
点击复制

标准模型下格上固定长度消息签名方案
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
39卷
期数:
2015年05期
页码:
566
栏目:
出版日期:
2015-10-31

文章信息/Info

Title:
Lattice-based signature scheme for constant-sized message in standard model
作者:
汪洁洁1许春根1徐 磊1张 星2
南京理工大学 1.理学院;
2.计算机科学与工程学院,江苏 南京210094
Author(s):
Wang Jiejie1Xu Chungen1Xu Lei1Zhang Xing2
1.School of Science;
2.School of Computer Science and Engineering,NUST,Nanjing 210094,China
关键词:
签名方案 左抽样算法 小整数解 存在性不可伪造
Keywords:
lattices signature schemes sampleLeft algorithm small integer solution existentially unforgeable
分类号:
TP309
摘要:
为了抵抗量子计算,该文基于格理论,采用左抽样算法(SampleLeft algorithm)构造了一个标准模型下格上固定长度消息签名方案。利用格上小整数解问题的困难性,证明该方案在标准模型下对静态选择的消息攻击是存在性不可伪造的。通过与其他签名方案比较可知,该文签名方案的公钥长度大大减小,计算复杂度降低,签名方案的效率提高。
Abstract:
In order to secure against quantum computing,based on the lattice theory,a new lattice-based signature scheme is presented here for the constant-sized message in the standard model by using sampleleft algorithm.The scheme is proved to be existentially unforgeable against statically chosen message attacks in the standard model under the small integer solution(SIS)assumption.Compared with other signature schemes,the proposed scheme has shorter public-key length and lower computational complexity,and it is more efficient than the others.

参考文献/References:

[1] Peter Shor.Algorithms for quantum computation:Discrete logarithms and factoring[A].IEEE Symposium on Foundations of Computer Science[C].Santa Fe,US:IEEE Computer Soceity Press,1994:124-134.
[2]You I,Hori Y,Sakurai K.Enhancing SVO logic for mobile IPV6 security protocols[J].Journal of Wireless Mobile Networks,Ubiquitous Computing,and Dependable Applications(JoWUA),2011,2(3):26-52.
[3]Micciancio D,Regev O.Post-quantum cryptography[M].Berlin,Germany:Springer Berlin Heidelberg,2009:147-191.
[4]Gentry C,Peikert C,Vaikuntanathan V.Trapdoors for hard lattices and new cryptographic constructions[J].Electronic Colloquium on Computational Complexity,2008,14:197-206.
[5]Cash D,Hofheinz D,Kiltz E,et al.Bonsai trees,or how to delegate a lattice basis[J].Journal of Cryptology,2012,25(4):601-639.
[6]王凤和,胡予濮,贾艳艳.标准模型下的格基数字签名方案[J].西安电子科技大学学报,2012,39(4):57-61.
Wang Fenghe,Hu Yupu,Jia Yanyan.Lattice-based signature scheme in the standard model[J].Journal of Xidian University,2012,39(4):57-61.
[7]Agrawal S,Boneh D,Boyen X.Efficient lattice(H)IBE in the standard model[J].Advances in Cryptology-Eurocrypt 2010(The Series Lecture Notes in Computer Science),6110:553-572.
[8]Singh K,Pandu Rangan C,Banerjee A K.Security,privacy,and applied cryptography engineering[M].Berlin,Germany:Springer Berlin Heidelberg,2012:153-172.
[9]Singh K,Pandu Rangan C,Banerjee A K.Efficient lattice HIBE in the standard model with shorter public parameters[J].Information and Communication(Technology Lecture Notes in Computer Science),2014,8407:542-553.
[10]许春根,张傲红,韩牟,等.一种基于离散对数问题的无证书代理签名方案[J].南京理工大学学报,2010,34(6):733-737.
Xu Chungen,Zhang Aohong,Han Mu,et al.Certificateless proxy signature scheme based on discrete logarithm problem[J].Journal of Nanjing University of Science and Technology,2010,34(6):733-737.

[11]刘风华,米军利,丁恩杰.基于离散对数的容忍入侵的代理盲签名方案[J].南京理工大学学报,2015,39(1):34-38.
Liu Fenghua,Mi Junli,Ding Enjie.Intrusion-tolerant proxy blind signature scheme based on discrete logarithm[J].Journal of Nanjing University of Science and Technology,2015,39(1):34-38.

[12]Micciancio D,Regev O.Worst-case to average-case reductions based on Gaussian measures[J].SIAM Journal on Computing,2007,37(1):267-302.

[13]Alwen J,Peikert C.Generating shorter bases for hard random lattices[J].Theory of Computing Systems,2011,48(3):535-553.
[14]Boneh D,Boyen X.Short signatures without random oracles[J].Advances in Cryptology-Eurocrypt,2004,21(2):56-73.

相似文献/References:

[1]赵泽茂,徐慧,刘凤玉.具有消息链接恢复的椭圆曲线认证加密方案[J].南京理工大学学报(自然科学版),2005,(01):81.
 ZHAO Ze-mao,XU Hui,LIU Feng-yu.Elliptic Curve Authenticated Encryption Scheme with Message Linkage Recovery[J].Journal of Nanjing University of Science and Technology,2005,(05):81.

备注/Memo

备注/Memo:
收稿日期:2015-05-04 修回日期:2015-07-01
基金项目:江苏省自然科学基金(BK20141405; BK20131353)
作者简介:汪洁洁(1991-),女,硕士生,主要研究方向:信息安全与密码,E-mail:wjj121hehe@163.com; 通讯作者:许春根(1969-),男,博士,教授,主要研究方向:信息安全与密码技术应用,E-mail:xuchung@njust.edu.cn。
引文格式:汪洁洁,许春根,徐磊,等.标准模型下格上固定长度消息签名方案[J].南京理工大学学报,2015,39(5):566-570.
投稿网址:http://zrxuebao.njust.edu.cn
DOI:10.14177/j.cnki.32-1397n.2015.39.05.009
更新日期/Last Update: 2015-10-31