[1]高学星,侯保林,孙华刚.基于FDA和神经网络的弹药协调器故障诊断[J].南京理工大学学报(自然科学版),2015,39(06):711.
 Gao Xuexing,Hou Baolin,Sun Huagang.Fault diagnosis of shell transfer arm based on FDA and neural network[J].Journal of Nanjing University of Science and Technology,2015,39(06):711.
点击复制

基于FDA和神经网络的弹药协调器故障诊断
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
39卷
期数:
2015年06期
页码:
711
栏目:
出版日期:
2015-12-31

文章信息/Info

Title:
Fault diagnosis of shell transfer arm based on FDA and neural network
作者:
高学星1侯保林1孙华刚2
1.南京理工大学 机械工程学院,江苏 南京 210094;
2.军械技术研究所,河北 石家庄 050003
Author(s):
Gao Xuexing1Hou Baolin1Sun Huagang2
1.School of Mechanical Engineering,NUST,Nanjing 210094,China;
2.Ordnance Technical Institute,Shijiazhuang 050003,China
关键词:
函数型数据分析 神经网络 弹药协调器 故障诊断 弹药自动装填系统 故障监测
Keywords:
functional data analysis neural network shell transfer arm fault diagnosis automatic ammunition loading system fault detection
分类号:
TJ307
摘要:
针对弹药自动装填系统中故障监测与排查困难的问题,以其子系统弹药协调器为例,通过4层信息抽象进行了故障诊断研究,即从真实设备到虚拟模型的抽象、从虚拟模型到响应曲线的抽象、从响应曲线到特征参数的抽象和从特征参数到故障信息的抽象。建立了协调器的不确定性模型作为样本来源,通过抽样仿真获得了样本的响应曲线族。考虑到响应曲线的连续性和平滑性,使用函数型数据分析(FDA)对响应曲线进行了特征提取。根据样本中的特征参数和不确定性参数,训练神经网络作为故障诊断机。编写了故障诊断软件,验证了诊断的可行性和有效性。
Abstract:
To solve the problem that fault detection and isolation is difficult in automatic ammunition loading systems,a shell transfer arm is taken as an object and the fault diagnosis is broken into four information abstractions:the abstraction from a real equipment to a simulation model,the abstraction from the simulation model to response curves,the abstraction from the response curves to feature parameters,and the abstraction from the feature parameters to fault information.The uncertainty model of the shell transfer arm is built and response curves are obtained after samplings and simulations.Considering the continuity and smoothness of signals,features are abstracted using functional data analysis(FDA).Neural network is trained to be a fault diagnosis machine,according to feature parameters and uncertainty parameters in samples.A fault diagnosis software is developed and its feasibility and validity is verified.

参考文献/References:

[1] 侯保林.樵军谋,刘琮敏.火炮自动装填[M].北京:兵器工业出版社,2010.
[2]杨青,孙佰聪,朱美臣,等.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523. Yang Qing,Sun Baicong,Zhu Meichen,et al.Rolling bearing fault diagnosis method based on wavelet packet entropy and clustering analysis[J].Journal of Nanjing University of Science and Technology,2013,37(4):517-523.
[3]徐涛,王祁.PCA在火箭发动机试车台传感器故障诊断中的应用[J].南京理工大学学报,2006,30(6):669-672.
Xu Tao,Wang Qi.Application of PCA in sensor fault diagnosis of rocket engine ground testing bed[J].Journal of Nanjing University of Science and Technology,2006,30(6):669-672.
[4]赵志宏.基于振动信号的机械故障特征提取与诊断研究[D].北京:北京交通大学交通运输学院,2012.
[5]Ramsay J O.When the data are functions[J].Psychometrika,1982,47(4):379-396.
[6]Ramsay J O,Dalzell C J.Some tools for functional data analysis[J].Journal of the Royal Statistical Society Series B(Methodological),1991,53(3):539-572.
[7]Ramsay J O,Silverman B W.Functional data analysis[M].2nd ed.New York,USA:Springer Science+Business Media,Inc.,2005.
[8]Kayano M,Konishi S.Functional principal component analysis via regularized Gaussian basis expansions and its application to unbalanced data[J].Journal of Statistical Planning and Inference,2009,139(7):2388-2398.
[9]Ordóñez C,Sierra C,Albuquerque T,et al.Functional data analysis as a tool to correlate textural and geochemical data[J].Applied Mathematics and Computation,2013,223:476-482.
[10]Kipp K,Johnson S T,Hoffman M A.Functional principal component analysis of H-reflex recruitment curves[J].Journal of Neuroscience Methods,2011,197(2):270-273.
[11]Zipunnikov V,Caffo B,Yousem D M,et al.Functional principal component model for high-dimensional brain imaging[J].NeuroImage,2011,58(3):772-784.
[12]Gokulakrishnan P,Lawrence A D,Mclellan P J,et al.A functional-PCA approach for analyzing and reducing complex chemical mechanisms[J].Computers & Chemical Engineering,2006,30(6-7):1093-1101.
[13]Segovia-Gonzalez M M.Guerrero F M,herranz P.Explaining functional principal component analysis to actuarial science with an example on vehicle insurance[J].Insurance:Mathematics and Economics,2009,45(2):278-285.
[14]de Boor C.A practical guide to splines[M].Heidelberg,Germany:Springer-Verlag,2001.
[15]Stadtmüller U,Zampiceni M.An introduction to functional data analysis[J].Lecture Notes in Mathematics,2015,2120:257-292.

相似文献/References:

[1]陈机林,王力,高强,等.爆破扫雷器电液伺服系统建模[J].南京理工大学学报(自然科学版),2012,36(04):645.
 CHEN Ji-lin,WANG Li,GAO Qiang,et al.Modeling of Electro-hydraulic Servo System of Explosive Sweeper Mine Device[J].Journal of Nanjing University of Science and Technology,2012,36(06):645.
[2]高强,金勇,侯远龙,等.某扫雷车扫雷犁电液伺服系统辨识与控制[J].南京理工大学学报(自然科学版),2012,36(02):238.
 GAO Qiang,JIN Yong,HOU Yuan-long,et al.Modeling and Control for Mine Sweeping Plough Electro-hydraulic Servo System of Certain Mine-clearing Vehicle[J].Journal of Nanjing University of Science and Technology,2012,36(06):238.
[3]余华,黄程韦,张潇丹,等.混合蛙跳算法神经网络及其在语音情感识别中的应用[J].南京理工大学学报(自然科学版),2011,(05):659.
 YU Hua,HUANG Cheng-wei,ZHANG Xiao-dan,et al.Shuffled Frog-leaping Algorithm Based Neural Network and Its Application in Speech Emotion Recognition[J].Journal of Nanjing University of Science and Technology,2011,(06):659.
[4]林棻,赵又群.汽车侧偏角估计方法比较[J].南京理工大学学报(自然科学版),2009,(01):122.
 LIN Fen,ZHAO You-qun.Comparison of Methods for Estimating Vehicle Side Slip Angle[J].Journal of Nanjing University of Science and Technology,2009,(06):122.
[5]李成国,牟善祥,张忠传,等.基于LTCC的Ka波段无源等效腔体分析与优化设计[J].南京理工大学学报(自然科学版),2009,(03):371.
 LI Cheng-guo,MU Shan-xiang,ZHANG Zhong-chuan.Analysis and Optimal Design of Passive Equivalent Cavity in Ka Wave Band Based on LTCC[J].Journal of Nanjing University of Science and Technology,2009,(06):371.
[6]秦华旺,戴跃伟,王执铨,等.一种基于改进神经网络的入侵容忍系统模型[J].南京理工大学学报(自然科学版),2008,(05):628.
 QIN Hua-wang,DAI Yue-wei,WANG Zhi-quan.Model of Intrusion Tolerant System Based on Improved Neural Networks[J].Journal of Nanjing University of Science and Technology,2008,(06):628.
[7]钱晓东,王正欧.ART2神经网络聚类的改进研究[J].南京理工大学学报(自然科学版),2007,(01):71.
 QIAN Xiao-dong,WANG Zhen-ou.Improvement of Clustering of ART2 Neural Network[J].Journal of Nanjing University of Science and Technology,2007,(06):71.
[8]李千目,戚湧,张宏,等.IIDS的行为特征提取方法研究[J].南京理工大学学报(自然科学版),2004,(02):140.
 LI Qian-mu,QI Yong,ZHANG Hong,et al.Research on Method for Obtaining Action Character Based on IIDS[J].Journal of Nanjing University of Science and Technology,2004,(06):140.
[9]王树亮,王 东,冯 珍,等.基于小波包-神经网络故障诊断系统研究[J].南京理工大学学报(自然科学版),2004,(04):356.
 WANG Shu liang,WANG Dong,FENG Zhen,et al.Study of Fault Diagnosis System Based on Wavelet Packet-neural Network[J].Journal of Nanjing University of Science and Technology,2004,(06):356.
[10]徐晋.基于神经网络专家系统的创业企业信用等级评估研究[J].南京理工大学学报(自然科学版),2004,(06):684.
 XU Jin.Evaluation Index System of the Venture Enterprise’s Credit Level Based on Artificial Neural Network[J].Journal of Nanjing University of Science and Technology,2004,(06):684.

备注/Memo

备注/Memo:
收稿日期:2015-07-17 修回日期:2015-10-01
基金项目:国家自然科学基金(51175266)
作者简介:高学星(1987-),男,博士生,主要研究方向:火炮可靠性与故障诊断,E-mail:hss1737@gmail.com; 通讯作者:侯保林(1965-),男,教授,博士生导师,主要研究方向:火炮弹药装填,E-mail:13611590782@163.com。
引文格式:高学星,侯保林,孙华刚.基于FDA和神经网络的弹药协调器故障诊断[J].南京理工大学学报,2015,39(6):711-716.
投稿网址:http://zrxuebao.njust.edu.cn
DOI:10.14177/j.cnki.32-1397n.2015.39.06.013
更新日期/Last Update: 2015-12-31