[1]林 棋,张 宏,李千目.一种基于MA-LSSVM的封装式特征选择算法[J].南京理工大学学报(自然科学版),2016,40(01):10.
 Lin Qi,Zhang Hong,Li Qianmu.Wrapper feature selection algorithm based on MA-LSSVM[J].Journal of Nanjing University of Science and Technology,2016,40(01):10.
点击复制

一种基于MA-LSSVM的封装式特征选择算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年01期
页码:
10
栏目:
出版日期:
2016-02-29

文章信息/Info

Title:
Wrapper feature selection algorithm based on MA-LSSVM
作者:
林 棋张 宏李千目
南京理工大学 计算机科学与工程学院,江苏 南京 210094
Author(s):
Lin QiZhang HongLi Qianmu
School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
特征选择 文化基因算法 最小二乘支持向量机 高维小样本数据 机器学习 全局搜索 局部搜索
Keywords:
feature selection memetic algorithm least squares support vector machine high dimensional small sample data machine learning global search local search
分类号:
TP18
摘要:
为了解决高维小样本的特征选择问题,该文结合文化基因算法(Memetic algorithm,MA)与最小二乘支持向量机(Memetic algorithm and least squares support vector machine,MA-LSSVM),设计了一种封装式(Wrapper)特征选择算法。该方法将全局搜索与局部搜索相结合作为求解策略,利用了最小二乘支持向量机易于求解的特点,构造分类器,以分类的准确率作为文化基因算法寻优过程中适应度函数的主要成分。实验表明,MA-LSSVM可以较高效稳定地获取对分类贡献较大的特征,降低数据维度,提高了分类效率。
Abstract:
To improve the feature selection problem of the high dimensional small sample data,this paper combines memetic algorithm(MA)and least squares support vector machine(LS-SVM)to design a wrapper feature selection method(MA-LSSVM).The solving strategy of the proposed method is composed by global search and local search,which utilizes the speciality of being easy to search optimal solution to construct classifiers and to regard classification accuracy as the main component of memetic algorithm fitness function in the optimization process.The experimental results demonstrate that the MA-LSSVM can be more efficient and stable to obtain features larger contribution to the classification precision,reducing the data dimension and improving the classification efficiency.

参考文献/References:

[1] Saeys Y,Inza I,Larra?aga P.A review of feature selection techniques in bioinformatics[J].Bioinformatics,2007,23(19):2507-2517.
[2]申晓宁,李涛,张敏,等.一种基于模糊逻辑引入偏好信息的多目标遗传算法[J].南京理工大学学报,2011,35(2):245-251.

Shen Xiaoning,Li Tao,Zhang Min,et al.Multi-objective optimization genetic algorithm incorporating preference information based on fuzzy logic[J].Journal of Nanjing University of Science and Technology,2011,35(2):245-251.
[3]汤可宗,李慧颖,李娟,等.一种求解复杂优化问题的改进粒子群优化算法[J].南京理工大学学报,2015,39(4):386-391.
Tang Kezong,Li Huiying,Li Juan,et al.Improved particle swarm optimization algorithm for solving complex optimization problems[J].Journal of Nanjing University of Science and Technology,2015,39(4):386-391.
[4]Li L,Weinberg C R,Darden T A,et al.Gene selection for sample classification based on gene expression data:Study of sensitivity to choice of parameters of the GA/KNN method[J].Bioinformatics,2001,17(12):1131-1142.
[5]Huang Chenglung,Dun Jianfan.A distributed PSO-SVM hybrid system with feature selection and parameter optimization[J].Applied Soft Computing,2008,8(4):1381-1391.
[6]Neri F,Cotta C.Memetic algorithms and memetic computing optimization:A literature review[J].Swarm and Evolutionary Computation,2012,2:1-14.
[7]余正涛,邹俊杰,赵兴,等.基于主动学习的最小二乘支持向量机稀疏化[J].南京理工大学学报,2012,36(1):12-17.
Yu Zhengtao,Zou Junjie,Zhao Xing,et al.Sparseness of least squares support vector machines based on active learning[J].Journal of Nanjing University of Science and Technology,2012,36(1):12-17.
[8]武志峰,黄厚宽,赵翔,等.二进制编码差异演化算法在Agent联盟形成中的应用[J].计算机研究与发展,2008,45(5):848-852.
Wu Zhifeng,Huang Houkuan,Zhao Xiang,et al.Binary encoding difference evolution algorithm is applied in the course of forming Agent union[J].Journal of Computer Research and Development,2008,45(5):848-852.
[9]孙艳丰.基于遗传算法和禁忌搜索算法的混合策略及其应用[J].北京工业大学学报,2006,32(3):258-262.
Sun Yanfeng.Hybrid strategy based on genetic algorithm and tabu search algorithm and its application[J].Journal of Beijing University of Technology,2006,32(3):258-262.
[10]Tao Gong,Tuson A L.Differential evolution for binary encoding[M].Soft Computing in Industrial Applications.Berlin:Springer Berlin Heidelberg,2007:251-262.
[11]李光,吴祈宗.基于结论一致的综合评价数据标准化研究[J].数学的实践与认识,2011,41(3):72-77.
Li Guang,Wu Xizong.Research on data standardization in comprehensive evaluation based on consistent result[J].Mathematics in Practice and Theory,2011,41(3):72-77.
[12]刘罡,李元香,郑昊,等.保存基因的2-Opt一般反向差分演化算法[J].小型微型计算机系统,2012,33(4):789-794.
Liu Gang,Li Yuanxiang,Zheng Hao,et al.Save the gene 2-Opt general inverse differential evolution algorithm[J].Small Microcomputer System,2012,33(4):789-794.
[13]郭亚宁,冯莎莎.基于决策树方法的数据挖掘分析[J].软件导刊,2010,09(9):103-105.
Guo Yaning,Feng Shasha.Analysis of data mining based on decision tree algorithm[J].Soft Ware Guide,2010,09(9):103-105.
[14]李建更,高志坤.随机森林针对小样本数据类权重设置[J].计算机工程与应用,2009,45(26):131-134.
Li Jiangeng,Gao Zhikun.Setting of class weights in random forest for small-sample data[J].Computer Engineering and Applications,2009,45(26):131-134.
[15]李云.稳定的特征选择研究[J].微型机与应用,2012,31(15):1-2.
Li Yun.Research on stable feature selection[J].Microcomputer & Its Applications,2012,31(15):1-2.

相似文献/References:

[1]徐敏,张丽萍,朱梧槚.基于Fisher线性判别式的层次文档分类[J].南京理工大学学报(自然科学版),2005,(04):460.
 XU Min~,ZHANG Li-ping~,ZHU Wu-jia~.Hierarchical Document Categorization Based on Fisher Linear Discriminant[J].Journal of Nanjing University of Science and Technology,2005,(01):460.
[2]潘 俊,王瑞琴,孔繁胜.基于结构和约束保持的半监督特征选择[J].南京理工大学学报(自然科学版),2014,38(04):518.
 Pan Jun,Wang Ruiqin,Kong Fansheng.Semi-supervised feature selection based on structure and constraints preserving[J].Journal of Nanjing University of Science and Technology,2014,38(01):518.

备注/Memo

备注/Memo:
收稿日期:2015-06-15 修回日期:2015-09-30
基金项目:国家自然科学基金(61272419); 江苏省未来网络前瞻性研究项目(BY2013095-3-02); 江苏省产学研前瞻性项目(BY2014089)
作者简介:林棋(1992-),男,硕士生,主要研究方向:机器学习、网络安全和数据挖掘,E-mail:380359384@qq.com; 通讯作者:张宏(1956-),男,博士,教授,主要研究方向:网络故障诊断与数据挖掘、信息安全理论与技术,E-mail:zhhong@mail.njust.edu.cn。
引文格式:林棋,张宏,李千目.一种基于MA-LSSVM的封装式特征选择算法[J].南京理工大学学报,2016,40(1):10-16.
投稿网址:http://zrxuebao.njust.edu.cn
DOI:10.14177/j.cnki.32-1397n.2016.40.01.002
更新日期/Last Update: 2016-02-29