[1]张雪峰,赵 莉.基于改进Retinex的图像增强算法[J].南京理工大学学报(自然科学版),2016,40(01):24.
 Zhang Xuefeng,Zhao Li.Image enhancement algorithm based on improved Retinex[J].Journal of Nanjing University of Science and Technology,2016,40(01):24.
点击复制

基于改进Retinex的图像增强算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年01期
页码:
24
栏目:
出版日期:
2016-02-29

文章信息/Info

Title:
Image enhancement algorithm based on improved Retinex
作者:
张雪峰赵 莉
信阳农林学院 信息工程学院,河南 信阳 464000
Author(s):
Zhang XuefengZhao Li
College of Information Engineering,Xinyang College of Agriculture and Forestry,Xinyang 464000,China
关键词:
光照变化 图像增强 Retinex算法 动态范围压缩 光照分量 双边滤算法 光晕伪影
Keywords:
illumination change image enhancement Retinex algorithm dynamic range compression light components bilateral filtering algorithm halo artifacts
分类号:
TP391
摘要:
为了改善图像的增强效果,在多尺度Retinex(Multi-scale Retinex,MSR)算法的基础上,提出一种改进Retinex的图像增强算法。该算法首先采用MSR算法对原始图像进行分解,得到光照分量图像和反射分量图像,然后伽马变换对光照分量图像增强处理,并采用线性拉伸方式对增强结果进行修正,同时采用双边滤波算法对反射分量图像进行处理去除噪声,最后对处理后的光照分量图像和反射分量图像进行合并得到增强后的图像,采用仿真对比实验对算法性能进行测试。实验结果表明,该文算法改善了图像视觉质量,保留了更丰富的细节信息,有效防止了光晕伪影,更加有利于后续的图像处理。
Abstract:
In order to improve the effect of image enhancement,a new image enhancement algorithm based on improved Retinex is proposed.In this algorithm,the original image is decomposed by the multi-scale Retinex(MSR)algorithm to obtain the illumination component and the reflection component.The image is processed by the gamma ray transform and modified by a linear stretching method while the reflection component image is processed using the bilateral filtering algorithm.The light component and the reflection component of images are combined to obtain the enhanced image,and the performance is tested by the simulation experiments.The experimental results show that the proposed image enhancement algorithm can improve the visual quality of images,retain more abundant details,effectively eliminating the “halo artifacts” and being more conducive to the subsequent image processing.

参考文献/References:

[1] Nikola B,Svcn L.Light random sprays Retinex:exploiting the noisy illumination estimation[J].IEEE Signal Processing Letters,2013,20(12):1240-1243.
[2]Wang I.Q,Xiao L,Liu H Y,et al.Variation Bayesian method for Retinex[J].IEEE Transactions on Image Processing,2015,23(8):3381-3396..
[3]蔡式东,杨芳.基于直方图修正的图像增强算法[J].光电子技术,2012,32(3):155-159.

Cai Shidong,Yang Fang.Image enhancement based on histogram modification[J].Optoelectronic Technology,2012,32(3):155-159.
[4]Gafar I M,Abdul G,Masood S A.Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means[J].IEEE Geoscience and Remote Sensing Letter,2013,10(3):451-455.
[5]Cheng Yong,Hou Yingkun,Zhao Chunxia,et al.Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain[J].Neurocomputing,2010,73(10):2217-2224.
[6]Eunsung I,Sangjin K,Wonscok K.Contrast enhancement using dominant brightness level analysis and adaptive intensity transformation for remote sensing image[J].IEEE Geoscience and Remote Semsimg Letter,2013,10(1):62-66.
[7]Tan X,Triggs B.Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEE Transactions on Image Processing,2010,19(6):1635-1650.
[8]高银,云利军,石俊生,等.基于四阶PDE模型的暗原色理论雾天图像增强算法[J].南京理工大学学报,2015,39(5):544-549.
Gao Yin,Yun Lijun,Shi Junsheng,et al.Enhancement dark channel theory algorithm of fog image based on fourth-order PDE model[J].Journal of Nanjing University of Science and Technology,2015,39(5):544-549.
[9]李福文,金伟其,陈伟力,等.基于Retinex模型的彩色图像全局增强算法[J].北京理工大学学报,2010,30(8):947-951.
Li Fuwen,Jin Weiqi,Chen Weili,et al.Global color image enhancement algorithm based on Retinex model[J].Transactions of Beijing Institute of Technology,2010,30(8):947-951.
[10]宋书林,张彦,王宪,等.基于曲波变换和Retinex人脸光照处理算法[J].计算机工程与应用,2011,47(2):15-18.
Song Shulin,Zhang Yan,Wang Xian,et al.Illumination processing method based on curvelet and Retinex computer engineering and applications[J].Computer Engineering and Applications,2011,47(2):15-18.
[11]汪荣贵,张新龙.基于Retinex理论的压缩域图像增强方法研究[J].计算机研究与发展,2011,48(2):259-270.
Wang Ronggui,Zhang Xinlong.Image enhancement in the compressed domain based on Retinex theory[J].Journal of Computer Research and Development,2011,48(2):259-270.
[12]舒婷,刘耀峰,邓波,等.基于子带分解的MSR雾天图像增强算法[J].吉首大学学报(自然科学版),2015,36(1):40-46.
Shu Ting,Liu Yaofeng,Deng Bo,et al.Multi-scale Retinex algorithm for the foggy image enhancement based on sub-band decomposition[J].Journal oI Jishou Univ-ersity(Natural Science Edition),2015,36(1):40-46.
[13]李毅,张云峰,李宁,等.基于子带分解多尺度 Retinex的红外图像自适应细节增强[J].中国激光,2015,42(5):1-9.
Li Yi,Zhang Yunfeng,Li Ning,et al.Adaptive detail enhancement for infrared image based on subband decomposed multi-scale Retinex[J].Chinese Journal of Lasers,2015,42(5):1-9.
[14]王小鹏,陈璐,魏冲冲,等.一种改进的Retinex彩色图像增强方法[J].兰州交通大学学报,2015,34(1):55-59.
Wang Xiaopeng,Chen Lu,Wei Chongchong,et al.Color image enhancement based on improved Retinex algorithm[J].Journal of Lanzhou Jiaotong University,2015,34(1):55-59.

相似文献/References:

[1]王春平,孙国正,陈 钱.基于灰度冗余的红外图像直方图处理技术[J].南京理工大学学报(自然科学版),2007,(02):176.
 WANG Chun-ping,SUN Guo-zheng,CHEN Qian.Infrared Image Histogram-dealing Technique Based on Gray Redundancy[J].Journal of Nanjing University of Science and Technology,2007,(01):176.
[2]陈钱,张保民,顾国华.红外图像序列动态帧间滤波技术[J].南京理工大学学报(自然科学版),2003,(05):653.
 Chen Qian Zhang Baomin Gu Guohua.Dynamic Inter-frame Filtering in IR Image Sequences[J].Journal of Nanjing University of Science and Technology,2003,(01):653.
[3]逯 暄,肖泽龙,胡泰洋,等.基于视觉显著性分析的毫米波辐射图像增强[J].南京理工大学学报(自然科学版),2014,38(01):134.
 Lu Xuan,Xiao Zelong,Hu Taiyang,et al.MMW Radiometric image enhancement based on visual saliency analysis[J].Journal of Nanjing University of Science and Technology,2014,38(01):134.

备注/Memo

备注/Memo:
收稿日期:2015-10-07 修回日期:2015-11-25
基金项目:河南省教育厅科学技术研究重点项目(16A520091)
作者简介:张雪峰(1981-),女,讲师,主要研究方向:图形图像处理,信息安全,E-mail:tulin030302@163.com。
引文格式:张雪峰,赵莉.基于改进Retinex的图像增强算法[J].南京理工大学学报,2016,40(1):24-28.
投稿网址:http://zrxuebao.njust.edu.cn
DOI:10.14177/j.cnki.32-1397n.2016.40.01.004
更新日期/Last Update: 2016-02-29