[1] 牛东晓,曹树华.电力负荷预测技术及其应用[M].北京:中国电力出版社,1998.
[2]李光珍,刘文颖.基于LSSVM和马尔可夫链的母线负荷短期预测[J].电力系统保护与控制,2010,38(11):55-59,66.Li Guangzhen,Liu Wenying.Bus load short-term forecast based on LSSVM and Markov chain[J].Power System Protection and Control,2010,38(11):55-59,66.
[3]L Hock-Eam,Y Chee-Yin.Forecasting electricity usage using univariate time series models[J].AIP Conference Proceedings,2014,1635(1):799-804.
[4]杨国健,杨镜非,童开蒙,等.短期负荷预测的支持向量机参数选择方法[J].电力系统及其自动化学报,2012,24(6):148-151.
Yang Guojian,Yang Jingfei,Tong Kaimeng,et al.Parameter selection of support vector machine for short-term load forecasting[J].Proceedings of the CSU-EPSA,2012,24(6):148-151.
[5]张冬青,宁宣熙,刘雪妮.基于RBF神经网络的非线性时间序列在线预测[J].控制理论与应用,2009,26(2):151-155.
Zhang Dongqing,Ning Xuanxi,Liu Xueni.On-line prediction of nonlinear time series using RBF neural networks[J].Control Theory & Applications,2009,26(2):151-155.
[6]何耀耀,许启发,杨善林,等.基于RBF神经网络分位数回归的电力负荷概率密度预测方法[J].中国电机工程学报,2013,33(1):93-98.
He Yaoyao,Xu Qifa,Yang Shanlin,et al.A power load probability density forecasting method based on RBF neural network quantile regression[J].Proceedings of the CSEE,2013,33(1):93-98.
[7]Li Cunhe,Shi Guoqiang.Weights optimization for multi-instance multi-label RBF neural networks using steepest descent method[J].Neural Computing and Applications,2013,22(7-8):1563-1569.
[8]姜鸿羽,马宏忠,梁欢,等.改进粒子BP神经网络在变电站噪声控制中的应用[J].中国电力,2014,47(9):71-76.
Jiang Hongyu,Ma Hongzhong,Liang Huan,et al.The application of improved particle BP neural network for substation noise control[J].Electric Power,2014,47(9):71-76.
[9]Langeveld J,Engelbrecht A P.Set-based particle swarm optimization applied to the multidimensional knapsack problem[J].Swarm Intelligence,2012,6(4):297-342.
[10]杨廷志,文小飞,万俊,等.改进神经网络的短期负荷预测模型及仿真[J].计算机仿真,2014,31(10):145-150,176.
Yang Tingzhi,Wen Xiaofei,Wan Jun,et al.Short-term power load forecasting model and simulation based on neural network[J].Computer Simulation,2014,31(10):145-150,176.
[11]姜林.基于粒子群优化神经网络的电力短期负荷预测研究[D].阜阳:辽宁工程技术大学电器与控制工程学院,2011.
[12]Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE,1995:1942-1948.
[13]孙俊.量子行为粒子群优化算法研究[D].无锡:江南大学信息工程学院,2009.