[1]金 鑫,周克栋,赫 雷,等.混沌信号的人因分量特征分析[J].南京理工大学学报(自然科学版),2016,40(02):212.[doi:10.14177/j.cnki.32-1397n.2016.40.02.013]
 Jin Xin,Zhou Kedong,He Lei,et al.Feature analysis of human factor component from chaotic signal[J].Journal of Nanjing University of Science and Technology,2016,40(02):212.[doi:10.14177/j.cnki.32-1397n.2016.40.02.013]
点击复制

混沌信号的人因分量特征分析
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年02期
页码:
212
栏目:
出版日期:
2016-04-30

文章信息/Info

Title:
Feature analysis of human factor component from chaotic signal
文章编号:
1005-9830(2016)02-0212-06
作者:
金 鑫1周克栋1赫 雷1黄雪鹰2张俊斌2
1.南京理工大学 机械工程学院,江苏 南京 210094; 2.中国人民解放军63856部队,吉林 白城 137001
Author(s):
Jin Xin1Zhou Kedong1He Lei1Huang Xueying2Zhang Junbin2
1.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China; 2.63856 Unit of PLA,Baicheng 137001,China
关键词:
信号分析 混沌信号 希尔伯特-黄变换 Teager能量算子 人因分量
Keywords:
signal analysis chaotic signal Hilbert-Huang transform Teager energy operator human factor component
分类号:
TJ22
DOI:
10.14177/j.cnki.32-1397n.2016.40.02.013
摘要:
该文基于希尔伯特-黄变换(Hilbert-Huang transform,HHT)方法和Teager能量算子,提出了一种混沌信号中人因分量的特征分析方法。利用HHT得到混沌信号的Hilbert谱,再对Hilbert谱提取Teager能量并计算其边际谱,从而获得Hilbert边际Teager能量谱。通过分析边际Teager能量谱获得混沌信号中人因分量的特征频率,由该特征频率通过HHT反向求解人因分量的幅值时间曲线。分析结果表明,边际Teager能量谱对实验获得的混沌信号中的人因分量具有良好的辨识效果。表面肌电实验结果证明,该文方法获得的人因分量幅值时间曲线与实际肌肉状态相符,所提方法对连续冲击下的人体生物力学研究有重要意义。
Abstract:
A method for analyzing the feature of human factor component from a chaotic signal is proposed based on the Hilbert-Huang transform(HHT)method and the Teager energy operator.The HHT method is used to get the Hilbert spectrum of a chaotic signal and the Teager energy of the Hilbert spectrum is extracted,then the Hilbert marginal Teager energy spectrum is calculated.The characteristic frequency is obtained by analyzing the marginal Teager energy spectrum.The amplitude-time spectrum of the human factor component is calculated by the inverse operation of HHT.Analysis results show that marginal Teager energy spectrum has a good recognition result for the human factor component from the experimental chaotic signal.Surface electromyography experiment results show that the amplitude-time spectrum of the human factor component has the congruent relationship with the actual muscle state.The proposed method is of great importance for the study of human biomechanics under successive impacts.

参考文献/References:

[1] Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series[J].Proceedings of the Royal Society of London Series A,1998,454(1971):903-995.
[2]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88.
Yang Yu,Yu Dejie,Cheng Junsheng.Roller bearing fault diagnosis method based on EMD and neural network[J].Journal of Vibration and Shock,2005,24(1):85-88.
[3]赵礼杰.基于EMD的Prony算法在低频振荡模态参数辨识中的应用[J].电力系统保护与控制,2009,37(23):9-14.
Zhao Lijie.Application of prony algorithm based on EMD for identifying model parameters of low-frequency oscillations[J].Power System Protection and Control,2009,37(23):9-14.
[4]Kaiser J F.On a simple algorithm to calculate the‘energy'of a signal[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Albuquerque,US:IEEE,1990:381-384.
[5]杨宇,于德介,程军圣,等.经验模态分解(EMD)在滚动轴承故障诊断中的应用[J].湖南大学学报(自然科学版),2003,30(5):25-28.
Yang Yu,Yu Dejie,Cheng Junsheng,et al.Application of empirical mode decomposition(EMD)in roller bearing fault diagnosis[J].Journal of Hunan University(Natural Science),2003,30(5):25-28.
[6]张卫,张雪英,孙颖.基于HHT边际Teager能量谱的语音情感识别[C]//第十二届全国人机语音通讯学术会议.贵阳:贵州大学,2013.
[7]李鸿光,孟光.基于EMD方法的混沌信号中周期分量的提取[J].应用数学和力学,2006,27(2):199-203.
Li Hongguang,Meng Guang.Harmonic component extraction from a chaotic signal based on EMD method[J].Applied Mathematics and Mechanics,2006,27(2):199-203.
[8]郑小霞,叶聪杰,符杨.基于微分改进的EMD 滚动轴承局部故障诊断[J].南京理工大学学报,2014,38(1):59-64.
Zheng Xiaoxia,Ye Congjie,Fu Yang.Localized fault diagnosis of rolling bearing using differential improved EMD[J].Journal of Nanjing University of Science and Technology,2014,38(1):59-64.
[9]苏文胜,王奉涛,张志新,等.EM降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(3):18-21.
Su Wensheng,Wang Fengtao,Zhang Zhixin,et al.Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J].Journal of Vibration and Shock,2010,29(3):18-21.
[10]甘雨,隋立芬,王冰.经验模态分解阈值消噪方法及其在惯性导航系统数据处理中的应用[J].测绘学报,2012,41(4):504-509.
Gan Yu,Sui Lifen,Wang Bing.EMD threshold denoising and its application in INS data processing[J].Acta Geodaetica et Cartographica Sinica,2012,41(4):504-509.
[11]杨汉生.基于改进Hilbert-Huang变换的暂态电能质量扰动定位方法[J].南京理工大学学报,2013,37(1):65-69.
Yang Hansheng.Transient power quality disturbances location method using improved Hilbert-Huang transform[J].Journal of Nanjing University of Science and Technology,2013,37(1):65-69.
[12]刘强,周瑞忠,刘宇航.基于HHT变换的结构地震响应与能量计算分析[J].武汉大学学报(工学版),2009,42(6):780-784.
Liu Qiang,Zhou Ruizhong,Liu Yuhang.Computation and analysis of seismic response and energy based on Hilbert-Huang transform[J].Engineering Journal of Wuhan University,2009,42(6):780-784.
[13]许宝杰,张建民,徐小力,等.抑制EMD端点效应方法的研究[J].北京理工大学学报,2006,26(3):196-200.
Xu Baojie,Zhang Jianmin,Xu Xiaoli,et al.A study on the method of restraining the ending effect of empirical mode decomposition(EMD)[J].Transactions of Beijing Institute of Technology,2006,26(3):196-200.
[14]丁雪娟.基于EMD和随机共振的机械故障特征提取方法研究[D].秦皇岛:燕山大学电气工程学院,2013.
[15]丁玉兰.人机工程学[M].北京:北京理工大学出版社,2002.

备注/Memo

备注/Memo:
收稿日期:2015-04-17 修回日期:2016-01-13
作者简介:金鑫(1987-),男,博士生,主要研究方向:生物力学、仿生学、动力学建模仿真,E-mail:jay12337@hotmail.com; 通讯作者:周克栋(1964-),男,教授,博士生导师,主要研究方向:特种机械新概念、新结构及新原理,特种机械系统仿真技术等,E-mail:zkd81151@126.com。
引文格式:金鑫,周克栋,赫雷,等.混沌信号的人因分量特征分析[J].南京理工大学学报,2016,40(2):212-217.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-04-30