[1]陈 昊,郭雅娟,黄 伟.面向负载均衡的VM迁移调度方法[J].南京理工大学学报(自然科学版),2016,40(02):244.[doi:10.14177/j.cnki.32-1397n.2016.40.02.018]
 Chen Hao,Guo Yajuan,Huang Wei.VM migration scheduling method for load balance[J].Journal of Nanjing University of Science and Technology,2016,40(02):244.[doi:10.14177/j.cnki.32-1397n.2016.40.02.018]
点击复制

面向负载均衡的VM迁移调度方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年02期
页码:
244
栏目:
出版日期:
2016-04-30

文章信息/Info

Title:
VM migration scheduling method for load balance
文章编号:
1005-9830(2016)02-0244-06
作者:
陈 昊郭雅娟黄 伟
江苏电力公司电力科学研究院,江苏 南京210036
Author(s):
Chen HaoGuo YajuanHuang Wei
Jiangsu Electric Power Company Research Institute,Nanjing 210036,China
关键词:
迁移调度 模拟退火 负载均衡 虚拟机放置
Keywords:
migration scheduling simulated annealing load balance virtual machine placement
分类号:
TP301
DOI:
10.14177/j.cnki.32-1397n.2016.40.02.018
摘要:
虚拟机动态迁移是实现虚拟计算环境下负载均衡、绿色节能、在线维护、主动容错以及资源灵活配置等功能的关键技术。针对多个虚拟机迁移场景下的并发性问题、迁移目标选择问题及迁移路径优化问题,该文提出一种以负载均衡为优化目标的虚拟机(VM)迁移调度方法。该方法首先识别可能违背负载均衡的物理节点,确定待迁移的VM对象,采用模拟退火算法以负载均衡为优化目标确定待迁移VM的迁移目标。最后,设计了路径交换策略对迁移路径进行优化以提高并发迁移数目。实验结果表明,该方法不仅能缩短迁移完成时间,而且能优化VM放置,确保负载均衡。
Abstract:
Virtual machine(VM)dynamic migration plays a key role in a virtualized computing environment for load balance,green energy saving,online maintenance,proactive fault tolerance and flexible resource configuration.To solve the issues of concurrency,migration object choice and migration path optimization in the case of multi VM migrations,a VM migration scheduling method with the goal of load balance is proposed here.The method first discovers physical machines with a high load and selects VMs hosted on these unbalanced physical machines as migration candidates.A simulated annealing algorithm is applied to get a optimal VM placement solution.Finally,a path exchange policy is designed to optimize the migration path.Experimental results show that the method can improve the number of concurrent migrating VMs to reduce the total migration completion time and ensure the load balance.

参考文献/References:

[1] Clark C,Fraser K,Hand S,et al.Live migration of virtual machines[C]//NSDI'05 Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation.Berkeley,US:USENIX Association Berkeley,2005:273-286.
[2]常德成,徐高潮.虚拟机动态迁移方法[J].计算机应用研究,2013,30(4):971-976.
Chang Decheng,Xu Gaochao.Live virtual machine migration algorithms[J].Application Research of Computers,2013,30(4):971-976.
[3]裴养,吴杰,王鑫.基于粒子群优化算法的虚拟机放置策略[J].计算机工程,2012,38(16):291-292.
Pei Yang,Wu Jie,Wang Xin.Virtual machine placement strategy based on particle swarm optimization algorithm[J].Computer Engineering,2012,38(16):291-292.
[4]李强,郝沁汾,肖利民,等.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,2011,34(12):2253-2264.
Li Qiang,Hao Qinfen,Xiao Limin,et al.Adaptive management and multi-objective optimization for virtual machine placement in cloud computing[J].Chinese Journal of Computers,2011,34(12):2253-2264.
[5]Xu J,Fortes J.Multi objective virtual machine placement in virtualized data center environments[C]//Proceedings of 2010 IEEE/ACM International Conference on Green Computing and Communications.Washington D C,US:IEEE Computer Society,2010:179-188.
[6]魏亮,黄韬,陈建亚,等.基于工作负载预测的虚拟机整合算法[J].电子与信息学报,2013,35(6):1271-1276.
Wei Liang,Huang Tao,Chen Jianya,et al.Workload prediction-based algorithm for consolidation of virtual machines[J].Journal of Electronics & Information Technology,2013,35(6):1271-1276.
[7]潘飞,蒋从锋,徐向华,等.负载相关的虚拟机放置策略[J].小型微型计算机系统,2013,34(3):520-524.
Pan Fei,Jiang Congfeng,Xu Xianghua,et al.Placement strategy of virtual machines based on workload characteristics[J].Journal of Chinese Computer Systems,2013,34(3):520-524.
[8]孙冬冬,柳青,武旖旎.面向负载均衡的自主式虚拟机动态迁移框架[J].计算机科学,2014,41(4):80-85.
Sun Dongdong,Liu Qing,Wu Yini.Load balancing-oritented autonomous live migration framework for virtual machine[J].Computer Science,2014,41(4):80-85.
[9]Corana A,Marchesi M,Martini C,et al.Minimizing multimodal functions of continuous variables with the simulated annealing algorithm[J].ACM Transactions on Mathematical Software,1987,13(3):262-280.

相似文献/References:

[1]艾解清,高济.基于Boltzmann学习策略的粒子群算法[J].南京理工大学学报(自然科学版),2012,36(03):402.
 AI Jie-qing,GAO Ji.Particle Swarm Optimization Based on Boltzmann Learning Strategy[J].Journal of Nanjing University of Science and Technology,2012,36(02):402.
[2]陈策,赵春霞.基于混沌退火粒子群优化算法的路径测试数据生成[J].南京理工大学学报(自然科学版),2011,(03):376.
 CHEN Ce,ZHAO Chun-xia.Path Test Data Generation Based on Chaos Anneal Particle Swarm Optimization Algorithm[J].Journal of Nanjing University of Science and Technology,2011,(02):376.
[3]贺亚鹏,朱晓华,庄珊娜,等.压缩感知雷达波形优化设计[J].南京理工大学学报(自然科学版),2011,(04):519.
 HE Ya-peng,ZHU Xiao-hua,ZHUANG Shan-na,et al.Optimal Waveform Design for Compressive Sensing Radar[J].Journal of Nanjing University of Science and Technology,2011,(02):519.
[4]刘静,李兴国,吴文.Costas跳频雷达运动补偿中的模拟退火算法[J].南京理工大学学报(自然科学版),2004,(04):380.
 LIU Jing,LI Xing guo,WU Wen.Simulated Annealing Algorithm for Motion Compensation of Costas Frequency hopped Radar[J].Journal of Nanjing University of Science and Technology,2004,(02):380.
[5]罗立宏,冯开平,叶家玮.基于摇瓶策略求解二维不规则件排样问题[J].南京理工大学学报(自然科学版),2015,39(02):194.
 Luo Lihong,Feng Kaiping,Ye Jiawei.2-D irregular polygon nesting with shaking bottle strategy[J].Journal of Nanjing University of Science and Technology,2015,39(02):194.

备注/Memo

备注/Memo:
收稿日期:2015-09-09 修回日期:2015-11-06
基金项目:国家电网公司科技项目(52420014001)
作者简介:陈昊(1980-),女,硕士,高级工程师,主要研究方向:系统管理、移动安全,E-mail:ch_ jsepri @163.com; 通讯作者:黄伟(1980-),男,高级工程师,主要研究方向:信息安全、系统管理,E-mail:hw_jsepri@163.com。
引文格式:陈昊,郭雅娟,黄伟.面向负载均衡的VM迁移调度方法[J].南京理工大学学报,2016,40(2):244-249.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-04-30