[1]李淑英,潘 亚,费 薇,等.基于分组遗传算法的虚拟机放置方法[J].南京理工大学学报(自然科学版),2016,40(03):322.[doi:10.14177/j.cnki.32-1397n.2016.40.03.012]
 Li Shuying,Pan Ya,Fei Wei,et al.Virtual machine placement method based on grouping genetic algorithm[J].Journal of Nanjing University of Science and Technology,2016,40(03):322.[doi:10.14177/j.cnki.32-1397n.2016.40.03.012]
点击复制

基于分组遗传算法的虚拟机放置方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年03期
页码:
322
栏目:
出版日期:
2016-06-30

文章信息/Info

Title:
Virtual machine placement method based on grouping genetic algorithm
文章编号:
1005-9830(2016)03-0322-06
作者:
李淑英1潘 亚1费 薇2徐 建2
1.商丘工学院 信息与电子工程学院,河南 商丘476000; 2.南京理工大学 计算机科学与工程学院,江苏 南京210094
Author(s):
Li Shuying1Pan Ya1Fei Wei2Xu Jian2
1.College of Information and Electronic Engineering,Shangqiu Institute of Technology,Shangqiu 476000,China; 2.School of Computer Science and Engineering,Nanjing University of Science and Technology, Nanjing 210094,China
关键词:
云计算 虚拟化 虚拟机放置 分组遗传算法 多目标优化 资源利用率 功率 温度
Keywords:
cloud computing virtualization virtual machine placement grouping genetic algorithm multi-objective optimization resource usage rate power temperature
分类号:
TP312
DOI:
10.14177/j.cnki.32-1397n.2016.40.03.012
摘要:
为解决现有的虚拟机(VM)初始放置目标较为片面,仅考虑1个或者2个方面的问题,该文提出了1种面向多目标优化的VM初始放置方法。综合考虑了资源利用率、功率以及温度3方面因素。基于改进的分组遗传算法生成候选的VM放置方案。采用多目标模糊评估方法筛选出最佳放置方案。仿真实验结果表明,该文方法可以减少约44%的资源浪费、降低3 kW服务器运行功率。
Abstract:
To solve the problem of existing virtual machine placement methods that the initial placement target is one-sided and only focuses on one or two optimization objects,a virtual machine initial placement method for multi-objective optimization is proposed here.Resource usage rate,system power and temperature are considered synthetically.Candidates of virtual machine placement solution are got based on an improved group genetic algorithm.The best virtual machine placement solution is selected by a multi-object fuzzy assessment algorithm.The simulation experiment results show that the proposed method can reduce the wasting of resources by 44% and server operation power by 3 kW.

参考文献/References:

[1] Dalvandi A,Gurusamy M,Chua K C.Power-efficient resource-guaranteed VM placement and routing for time-aware data center applications[J].Computer Networks,2015,88(C):249-268.
[2]Chen M T,Hsu C C,Kuo M S,et al.GreenGlue:Power optimization for data centers through resource-guaranteed VM placement[C]//IEEE International Conference on Internet of Things(iThings),and IEEE Green Computing and Communications(GreenCom)and IEEE Cyber,Physical and Social Computing(CPSCom).Taipei,China:IEEE,2014:510-517.
[3]张牧.云计算和多维QoS环境中基于蚁群优化算法在虚拟机资源负载均衡问题中的研究[J].计算机科学,2013,40(11A):60-62.
Zhang Mu.Research of virtual machine load balancing based on ant colony optimization in cloud computing and muiti-dimensional QoS[J].Computer Science,2013,40(11A):60-62.
[4]潘飞,蒋从锋,徐向华,等.负载相关的虚拟机放置策略[J].小型微型计算机系统,2013,34(3):520-524.
Pan Fei,Jiang Congfeng,Xu Xianghua,et al.Placement strategy of virtual machines based on workload characteristics[J].Journal of Chinese Computer Systems,2013,34(3):520-524.
[5]秦启飞,王世振,袁翔,等.云环境下基于CROTS算法的虚拟机放置策略[J].计算技术与自动化,2015,34(1):105-110.
Qin Qifei,Wang Shizhen,Yuan Xiang,et al.Chemical reactive optimization for VM consolidation in cloud computing environment[J].Computing Technology and Automation,2015,34(1):105-110.
[6]吴毅华,曹健,李明禄.云计算环境下基于需求预测的虚拟机节能分配方法研究[J].小型微型计算机系统,2013,34(4):778-782.
Wu Yihua,Cao Jian,Li Minglu.Energy efficient allocation of virtual machines in cloud computing environments based on demand forecast[J].Journal of Chinese Computer Systems,2013,34(4):778-782.
[7]Sun Meng,Gu Weidong,Zhang Xinchang,et al.A matrix transformation algorithm for virtual machine placement in cloud[C]//2013 12th IEEE International Conference on Trust,Security and Privacy in Computing and Communications(TRUSTCOM 2013).Melbourne,VIC,Australia:2013:1778-1783.
[8]Li Xin,Qian Zhuzhong,Chi Ruiqing,et al.Balancing resource utilization for continuous virtual machine requests in clouds[C]//MIS'12 Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing.Washington,DC,USA:IEEE Computer Society,2012:266-273.
[9]Wang Lizhe,Khan S U,Dayal J.Thermal aware workload placement with task-temperature profiles in a data center[J].The Journal of Supercomputing,2012,61(3):780-803.
[10]Ramos L,Bianchini R.C-Oracle:Predictive thermal management for data centers[C]//IEEE 14th International Symposium on High Performance Computer Architecture.Salt Lake City,UT,USA:IEEE,2008:111-122.
[11]Rodero I,Viswanathan H,Lee E K,et al.Energy-efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure[J].Journal of Grid Computing,2012,10(3):447-473.
[12]Elnozahy E N,Kistler M,Rajamony R.Energy-efficient server clusters[J].Lecture Notes in Computer Science,2003,2325:179-197.

相似文献/References:

[1]黄 纬,温志萍,程 初.云计算中基于K-均值聚类的虚拟机调度算法研究[J].南京理工大学学报(自然科学版),2013,37(06):807.
 Huang Wei,Wen Zhiping,Cheng Chu.Virtual machine scheduling algorithm based on K-means clustering in cloud computing[J].Journal of Nanjing University of Science and Technology,2013,37(03):807.
[2]申 京,吴晨光,郝 洋,等.面向云计算数据中心的弹性资源调整方法[J].南京理工大学学报(自然科学版),2015,39(01):89.
 Shen Jing,Wu Chenguang,Hao Yang,et al.Elastic resource adjustment method for cloud computing data center[J].Journal of Nanjing University of Science and Technology,2015,39(03):89.
[3]赵 莉.基于改进布谷鸟搜索算法的云计算资源调度[J].南京理工大学学报(自然科学版),2016,40(04):472.[doi:10.14177/j.cnki.32-1397n.2016.40.04.016]
 Zhao Li.Cloud computing resource scheduling based on modified cuckoo search algorithm[J].Journal of Nanjing University of Science and Technology,2016,40(03):472.[doi:10.14177/j.cnki.32-1397n.2016.40.04.016]
[4]李君茹,牛炳麟,赵 莉.基于双方承诺的云环境服务信任管理机制[J].南京理工大学学报(自然科学版),2018,42(02):217.[doi:10.14177/j.cnki.32-1397n.2018.42.02.013]
 Li Junru,Niu Binglin,Zhao Li.Trust management mechanism of cloud environment servicebased on two side commitment[J].Journal of Nanjing University of Science and Technology,2018,42(03):217.[doi:10.14177/j.cnki.32-1397n.2018.42.02.013]

备注/Memo

备注/Memo:
收稿日期:2016-01-08 修回日期:2016-03-10
基金项目:国家自然科学基金(61300053)
作者简介:李淑英(1980-),女,硕士,讲师,主要研究方向:软件工程、图形图像处理,E-mail:879930173@qq.com; 通讯作者:徐建(1979-),男,博士,副教授,主要研究方向:虚拟化技术、数据挖掘,E-mail:dolphin.xu@ njust.edu.cn。
引文格式:李淑英,潘亚,费薇,等.基于分组遗传算法的虚拟机放置方法[J].南京理工大学学报,2016,40(3):322-327.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-06-30