[1]殷 澄,许 田,单鸣雷,等.无序和斐波那契序列的二进制波导阵列的 安德森局域研究[J].南京理工大学学报(自然科学版),2016,40(03):354.[doi:10.14177/j.cnki.32-1397n.2016.40.03.018]
 Yin Cheng,Xu Tian,Shan Minglei,et al.Anderson localization in random and Fabonacci quasi-periodic binary waveguide array[J].Journal of Nanjing University of Science and Technology,2016,40(03):354.[doi:10.14177/j.cnki.32-1397n.2016.40.03.018]
点击复制

无序和斐波那契序列的二进制波导阵列的 安德森局域研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年03期
页码:
354
栏目:
出版日期:
2016-06-30

文章信息/Info

Title:
Anderson localization in random and Fabonacci quasi-periodic binary waveguide array
文章编号:
1005-9830(2016)03-0354-06
作者:
殷 澄1许 田2单鸣雷1陈秉岩1韩庆邦1朱昌平1
1.河海大学 江苏省输配电装备技术重点实验室,江苏 常州 213022; 2.南通大学 理学院,江苏 南通 226007
Author(s):
Yin Cheng1Xu Tian2Shan Minglei1Chen Bingyan1Han Qingbang1Zhu Changping1
1.Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University, Changzhou 213022,China; 2.College of Science,Nantong University,Nantong 226007,China
关键词:
安德森局域 无序序列 斐波那契序列 二进制波导阵列 分析转移矩阵方法 透过率 局域长度 电场 一维矩形微波波导
Keywords:
Anderson localization random sequence Fibonacci sequence binary waveguide arrays transfer matrix method transition localization length electrical field one-dimensional rectangular microwaves waveguide
分类号:
O441.4
DOI:
10.14177/j.cnki.32-1397n.2016.40.03.018
摘要:
为了研究相关性对电磁波的安德森局域现象的影响,该文根据无序序列构造了无序一维二进制波导阵列结构、根据斐波那契序列构造了准周期一维二进制波导阵列结构。利用分析转移矩阵方法分别计算了上述2种结构中横电模式的透过率、局域长度和电场的空间分布,并利用一维矩形微波波导进行了相关的实验。根据无序序列构造的无序二进制波导阵列结构的透射共振峰与周期性结构一一对应,位于带边的模式首先转为局域态; 根据斐波那契序列构造的准周期二进制波导阵列结构的传输特性与组成阵列的具体单元结构无关,电磁场能量通过分布在空间中不同位置的局域态
Abstract:
In order to investigate the effect of correlation on Anderson localization in electromagnetic waves,a random one-dimensional binary waveguide array is proposed based on a random binary sequence,and a quasi-periodic one-dimensional binary waveguide array is proposed based on a Fibonacci sequence.The transition,localization length and the spectra of the electrical field amplitude of tranverse electric(TE)mode for the two one-dimensional binary waveguide arrays are calculated using transfer matrix method.Experiments are carried out using one-dimensional rectangular microwaves waveguide structure.The peaks of transmission spectrum of the random one-dimensional binary waveguide array proposed based on a random binary sequence are identical with those of periodic waveguide arrays,the modes near the band edges become localized; the propagation characteristics of the quasi-periodic one-dimensional binary waveguide array proposed based on a Fibonacci sequence is independent of its basic unit, and electromagnetic energy is transferred discretely through the coupling between the spatial distributed localizations.

参考文献/References:

[1] Anderson P W.Absence of diffusion in certain random lattices[J].Physical Review,1958,109(5):1492-1505.
[2]Thouless D J.Electrons in disordered systems and the theory of localization[J].Physics Reports,1974,13(3):93-142.
[3]John S.Electromagnetic absorption in a disordered medium near a photon mobility edge[J].Physical Review Letters,1984,53(22):2169-2172.
[4]Deych L I,Erementchouk M V,Lisyansky A A.Scaling in the one-dimensional Anderson localization problem in the region of fluctuation states[J].Physical Review Letters,2003,90(12):126601.
[5]He S,Maynard J D.Detailed measurements of inelastic scattering in Anderson localization[J].Physical Review Letters,1986,57(25):3171-3174.
[6]Segev M.Anderson localization of light[J].Nature Photonics,2013,7(3):197-204.
[7]Raedt H D,Lagendijk A,Vries P D.Transverse localization of light[J].Physical Review Letters,1989,62(1):47-50.
[8]Schwartz T,Bartal G,Fishman S,et al.Transport and Anderson localization in disordered two-dimensional photonic lattices[J].Nature,2007,446(7131):52-55.
[9]Levi L,Rechtsman M,Freedman B,et al.Disorder-enhanced transport in photonic quasicrystals[J].Science,2011,332(637):1541-1544.
[10]Levi L,Krivolapov Y,Fishman S,et al.Hyper-transport of light and stochastic acceleration by evolving disorder[J].Nature Physics,2012,8(12):912-917
[11]Shi Xianling,Chen Xianfeng,Malomed B A,et al.Anderson localization at the subwavelength scale for surface plasmon polaritons in disordered arrays of metallic nanowires[J].Physical Review B,2014,89(19):195428.
[12]Kuhl U,Izrailev F M,Krokhin A A.Enhancement of localization in one-dimensional random potentials with long-range correlations[J].Physical Review Letters,2008,100(12):126402.
[13]Fernández-Marín A,Méndez-Bermúdez J,Carbonell J,et al.Beyond Anderson localization in 1D:Anomalous localization of microwaves in random waveguides[J].Physical Review Letters,2014,113(23):622-629
[14]Yin Cheng,Cao Zhuangqi,Shen Qishun.Why SWKB approximation is exact for all SIPs[J].Annals of Physics,2010,325(3):528-534.

备注/Memo

备注/Memo:
收稿日期:2015-11-22 修回日期:2016-01-11
基金项目:国家自然科学基金(11404092); 江苏省自然科学基金(SBK2014043338)
作者简介:殷澄(1983-),男,博士,讲师,主要研究方向:导波光学,E-mail:cyin.phys@gmail.com。
引文格式:殷澄,许田,单鸣雷,等.无序和斐波那契序列的二进制波导阵列的安德森局域研究[J].南京理工大学学报,2016,40(3):354-359.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-06-30