[1]张于晔,吴 刚,姚 波.塑性铰区采用SFRC的高架桥墩抗震性能[J].南京理工大学学报(自然科学版),2016,40(03):374.[doi:10.14177/j.cnki.32-1397n.2016.40.03.021]
 Zhang Yuye,Wu Gang,Yao Bo.Seismic performance of viaduct piers with SFRC in plastic hinge regions[J].Journal of Nanjing University of Science and Technology,2016,40(03):374.[doi:10.14177/j.cnki.32-1397n.2016.40.03.021]
点击复制

塑性铰区采用SFRC的高架桥墩抗震性能
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年03期
页码:
374
栏目:
出版日期:
2016-06-30

文章信息/Info

Title:
Seismic performance of viaduct piers with SFRC in plastic hinge regions
文章编号:
1005-9830(2016)03-0374-07
作者:
张于晔12吴 刚2姚 波1
1.南京理工大学 理学院,江苏 南京 210094; 2.东南大学 混凝土及预应力混凝土结构教育部重点实验室,江苏 南京 210096
Author(s):
Zhang Yuye12Wu Gang2Yao Bo1
1.School of Science,Nanjing University of Science and Technology,Nanjing 210094,China; 2.Key Laboratory of Concrete and Pre-stressed Concrete Structure of Ministry of Education, Southeast University,Nanjing 210096,China
关键词:
塑性铰区 高架桥 桥墩 钢纤维增强钢筋混凝土 普通混凝土 钢纤维混凝土 结构分析软件 钢筋混凝土 抗弯能力需求比
Keywords:
plastic hinge regions viaducts piers steel fiber reinforced concrete normal concrete steel fiber concrete tructural analysis software reinforced concrete flexural apacity-demand ratios
分类号:
U442.5+5; TU997
DOI:
10.14177/j.cnki.32-1397n.2016.40.03.021
摘要:
为了改善高架桥墩的抗震性能,提出了在其潜在塑性铰区采用钢纤维增强钢筋混凝土(SFRC)进行增强的方法。对普通混凝土(NC)和钢纤维混凝土(SFC)棱柱体试块进行轴压试验,获得2种混凝土的本构关系曲线。基于结构分析软件建立全墩身采用普通钢筋混凝土(RC)和桥墩塑性铰区采用SFRC的高架桥分析模型,分析不同桥墩关键部位的地震需求。利用UCFyber程序建立桥墩截面纤维单元模型,计算桥墩抗弯能力。对比分析全墩身采用RC和桥墩塑性铰区采用SFRC的高架桥墩的抗弯能力需求比。结果表明:SFC的强度和变形能力较NC更
Abstract:
The potential plastic hinge regions of viaduct piers are reinforced with steel fiber reinforced concrete(SFRC)in order to improve the seismic performance of the structures.Prism specimens constructed with normal concrete(NC)and steel fiber concrete(SFC)are tested under axial compression and the constitutive relation curves of the two kinds of concrete are obtained.Models of reinforced concrete(RC)piers and piers with SFRC in the plastic hinge regions are constructed using structural analysis software,and the seismic demands of the key parts of different piers are analyzed.The fiber element models of pier sections are established using the UCFyber program,and the flexural capacities of the piers are calculated.The flexural capacity-demand ratios of RC piers and piers with SFRC in the plastic hinge regions are analyzed and compared.The results show that the strength and deformation properties of SFC are better than NC; the plastic deformation and seismic energy dissipation of piers with SFRC in the plastic hinge regions are greater than those of RC piers under longitudinal ground motion input; the flexural capacity-demand ratios of piers with SFRC in the plastic hinge regions increase by 25.5% on average than those of RC piers,and the seismic safety of piers with SFRC in the plastic hinge regions is better.

参考文献/References:

[1] 范立础,李建中,王君杰.高架桥梁抗震设计[M].北京:人民交通出版社,2001.
[2]杨海波,尹晓春.考虑碰撞和支座影响的桥梁近场竖向地震响应分析[J].南京理工大学学报,2014,38(5):581-587.
Yang Haibo,Yin Xiaochun.Near-fault vertical earthquake response analysis of bridge considering pounding and bearing[J].Journal of Nanjing University of Science and Technology,2014,38(5):581-587.
[3]Kumutha R,Vijai K.Effect of steel fibers on the properties of concrete[J].Journal of Reinforced Plastics and Composites,2010,29(4):531-538.
[4]王林,胡秀章,黄焱龙,等.钢纤维混凝土动态抗拉强度的实验研究[J].振动与冲击,2011,30(11):50-53.
Wang Lin,Hu Xiuzhang,Huang Yanlong,et al.Dynamic tensile strength tests for steel fiber reinforced concrete[J].Journal of Vibration and Shock,2011,30(11):50-53.
[5]Gribniak V,Kaklauskas G,Kwan A K H,et al.Deriving stress-strain relationships for steel fiber concrete in tension from tests of beams with ordinary reinforcement[J].Engineering Structures,2012,42(12):387-395.
[6]Altun F,Haktanir T,Ari K.Effects of steel fiber addition on mechanical properties of concrete and RC beams[J].Construction and Building Materials,2007,21(3):654-661.
[7]Lee H H.Shear strength and behavior of steel fiber reinforced concrete columns under seismic loading[J].Engineering Structures,2007,29(7):1253-1262.
[8]Bernardi P,Cerioni R,Michelini E.Analysis of post-cracking stage in SFRC elements through a non-linear numerical approach[J].Engineering Fracture Mechanics,2013,108(8):238-250.
[9]Zhang Yuye,Harries K A,Yuan Wancheng.Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete[J].Engineering Structures,2013,48:255-265.
[10]高永.大型桥梁高桩承台群桩基础抗震能力研究[D].上海:同济大学土木工程学院,2009:74-88.
[11]Thomas J,Ramaswamy A.Mechanical properties of steel fiber-reinforced concrete[J].Journal of Materials in Civil Engineer,2007,19(5):385-92.
[12]Ramadoss P.Combined effect of silica fume and steel fiber on the splitting tensile strength of high-strength concrete[J].International Journal of Civil Engineering,2014,12(1A):96-103.
[13]Foster S J,Attard M M.Strength and ductility of fiber-reinforced high-strength concrete columns[J].Journal of Structural Engineering,2001,127(1):28-34.
[14]赵国藩,彭少民,黄承逵,等.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
[15]CSI.SAP2000 V-12.Integrated finite element analysis and design of structures basic analysis reference manual[M].Berkeley,CA,USA:Computers and Structures Inc,2008.
[16]Greimann L F,Wolde-Tinsae A M,Yang P S.Finite element model for soil-pile interaction in integral abutment bridges[J].Computers and Geotechnics,1987,4(3):127-149.
[17]LRFDSEIS-1-2009,AASHTO guide specifications for LRFD seismic bridge design[S].
[18]JTG/T B02-01-2008,公路桥梁抗震设计细则[S].
[19]Fu Feng,Lam D,Ye Jianqiao.Moment resistance and rotation capacity of semi-rigid composite connections with precast hollowcore slabs[J].Journal of Constructional Steel Research,2010,66(3):452-461.

备注/Memo

备注/Memo:
收稿日期:2015-09-03 修回日期:2015-11-06
基金项目:国家自然科学基金(51508276); 中央高校基本科研业务费专项资金(30915011329); 东南大学混凝土及预应力混凝土结构教育部重点实验室开放课题(CPCSME2014-02); 中国博士后科学基金(2015M570399)
作者简介:张于晔(1986-),男,博士,讲师,硕士生导师,主要研究方向:桥梁抗震与振动,E-mail:zyy@njust.edu.cn。
引文格式:张于晔,吴刚,姚波.塑性铰区采用SFRC的高架桥墩抗震性能[J].南京理工大学学报,2016,40(3):374-380.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-06-30