[1]王 宇,杨志荣,杨习贝.决策粗糙集属性约简:一种局部视角方法[J].南京理工大学学报(自然科学版),2016,40(04):444.[doi:10.14177/j.cnki.32-1397n.2016.40.04.011]
 Wang Yu,Yang Zhirong,Yang Xibei.Local attribute reduction approach based on decision-theoretic rough set[J].Journal of Nanjing University of Science and Technology,2016,40(04):444.[doi:10.14177/j.cnki.32-1397n.2016.40.04.011]
点击复制

决策粗糙集属性约简:一种局部视角方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年04期
页码:
444
栏目:
出版日期:
2016-08-29

文章信息/Info

Title:
Local attribute reduction approach based on decision-theoretic rough set
文章编号:
1005-9830(2016)04-0444-06
作者:
王 宇1杨志荣1杨习贝12
1.江苏科技大学 计算机科学与工程学院,江苏 镇江 212003; 2.南京理工大学 经济管理学院,江苏 南京210094
Author(s):
Wang Yu1Yang Zhirong1Yang Xibei12
1.School of Computer Science and Engineering,Jiangsu University of Science and Technology, Zhenjiang 212003,China; 2.School of Economics and Management,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
属性约简 代价 启发式算法 Local约简 单调性准则 正域规则 决策粗糙集
Keywords:
attribute reduction cost heuristic algorithm Local attribute reduction monotonic criterion positive domain rule decision-theoretic rough set
分类号:
TP18
DOI:
10.14177/j.cnki.32-1397n.2016.40.04.011
摘要:
比较于经典粗糙集,决策粗糙集模型将代价问题考虑在内,为粗糙集的属性约简问题带来了新的挑战。尽管已有针对决策粗糙集的一些属性约简方法被提出,但这些约简标准都是基于所有决策类的,约束条件较为严格。为解决这一问题,从局部视角出发,针对单独的决策类提出了Local约简的思想。基于启发式算法求解约简的实验结果表明,相比于面向所有决策类的约简,Local约简可以获得更多的正域规则,同时也能够进一步降低约简中的属性数量。
Abstract:
Compared with classical rough sets,the decision-theoretic rough set model takes cost into account,which brings new challenges for solving attribute reduction in rough set.Some attribute reduction methods of decision-theoretic rough set have been put forward.However,the standards of these methods are based on all decision classes.It is too stringent for some condition.To solve this problem,from a local perspective,the idea Local attribute reduction is proposed.The experimental results based on the heuristic algorithm show that compared with the reduction based on all decision classes,Local attribute reduction can generate more positive domain rules and reduce the number of attributes.

参考文献/References:

[1] Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
[2]段洁,胡清华,张灵均,等.基于邻域粗糙集的多标记分类特征选择算法[J].计算机研究与发展,2015,52(1):56-65.
Duan Jie,Hu Qinghua,Zhang Lingjun,et al.Feature selection for multi-label classification based on neighborhood rough sets[J].Journal of Computer Research and Development,2015,52(1):56-65.
[3]Yang Xibei,Song Xiaoning,Dou Huili,et al.Multi-granulation rough set:from crisp to fuzzy case[J].Annals Fuzzy Mathematics Information,2011,1(1):55-70.
[4]Hu Qinghua,Che Xunjian,Zhang Lei,et al.Rank entropy based decision trees for monotonic classification[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(11):2052-2064.
[5]Yao Yiyu,Wong S K M,Lingras P.A decision-theoretic rough set model[C]//Methodologies for Intelligent Systems.North-Holland,New York:[s.n],1990:17-24.
[6]Qian Yuhua,Zhang Hu,Sang Yanli,et al.Multigranula-tion decision-theoretic rough sets[J].International Journal of Approximate Reasoning,2014,55(1):225-237.
[7]Yao Yiyu.Probabilistic rough set approximations[J].International Journal of Approximate Reasoning,2008,49(2):255-271.
[8]Li Huaxiong,Zhou Xianzhong,Huang Bing,et al.Cost-sensitive three-way decision:a sequential strategy[C]//Rough Sets and Knowledge Technology.Berlin Heidelberg:Springer,2013:325-337.
[9]杨习贝,杨静宇.邻域系统粗糙集模型[J].南京理工大学学报,2012,36(2):291-295.
Yang Xibei,Yang Jingyu.Rough set model based on neighborhood system[J].Journal of Nanjing University of Science and Technology,2012,36(2):291-295.
[10]Liang Decui,Liu Dun,Pedrycz W,et al.Triangular fuzzy decision-theoretic rough sets[J].International Journal Approximate Reasoning,2013,54(8):1087-1106.
[11]闫敏伦.新型变精度多粒化粗糙集模型[J].南京理工大学学报,2014,38(4):496-500.
Yan Minlun.New rough set model:a variable precision multigranulation approach[J].Journal of Nanjing University of Science and Technology,2014,38(4):496-500.
[12]Liu Dun,Li Tianrui,Liang Decui.Incorporating logistic regression to decision-theoretic rough sets for classifications[J].International Journal of Approximate Reasoning,2014,55(1):197-210.
[13]Yu Hong,Liu Zhanguo,Wang Guoyin.An automatic method to determine the number of clusters using decision-theoretic rough set[J].International Journal of Approximate Reasoning,2014,55(1):101-115.
[14]贾修一,李伟湋,商琳,等.一种自适应求三枝决策中决策阈值的算法[J].电子学报,2011,39(11):2520-2525.
Jia Xiuyi,Li Weiwei,Shang Lin,et al.An adaptive learning parameters algorithm in three-way decision-theoretic rough set model[J].Acta Electronica Sinica,2011,39(11):2520-2525.
[15]贾修一,商琳.一种求三支决策阈值的模拟退火算法[J].小型微型计算机系统,2013,34(11):2603-2606. Jia Xiuyi,Shang Lin.A simulated annealing algorithm for learning thresholds in three-way decision-theoretic rough set model[J].Journal of Chinese Computer Systems,2013,34(11):2603-2606.
[16]王莉,周献中,李华雄.模糊决策粗糙集模型及其属性约简[J].上海交通大学学报,2013,47(7):1032-1035.
Wang Li,Zhou Xianzhong,Li Huaxiong.Fuzzy decision-throretic rough set model and its attribute reduction[J].Journal of Shanghai Jiao Tong University,2013,47(7):1032-1035.
[17]张贤勇,苗夺谦.决策粗糙集的一种新分类区域及相关比较分析[J].系统工程理论与实践,2014,34(12):3204-3211.
Zhang Xianyong,A new type of classification region and relevant comparison analyses of the decision-theoretic rough set[J].Systems Engineering-Theory and Practice,2014,34(12):3204-3211.
[18]Dou Huili,Yang Xibei,Song Xiaoning,et al.Decision-theoretic rough set:a multicost strategy[J].Knowledge-Based Systems,2016,91:71-83.
[19]Zhao Yan,Yao Yiyu.Attribute reduction in decision-theoretic rough set models[J].Information Sciences,2008,178(17):3356-3373.
[20]Yang Xibei,Qi Yong,Yu Hualong,et al.Want More?Pay More![C]// Rough Set and Current Trends in Computing.Berlin Heidelberg:Springer,2014:144-151.
[21]鞠恒荣,杨习贝,戚湧,等.量化粗糙集的单调性属性约简方法[J].计算机科学,2015,42(8):36-39.
Ju Hengrong,Yang Xibei,Qi Yong,et al.Approach to monotonicity attribute reduction in quantitative rough set[J].Computer Science,2015,42(8):36-39.

相似文献/References:

[1]李京政,杨习贝,王平心,等.模糊粗糙集的稳定约简方法[J].南京理工大学学报(自然科学版),2018,42(01):68.[doi:10.14177/j.cnki.32-1397n.2018.42.01.010]
 Li Jingzheng,Yang Xibei,Wang Pingxin,et al.Stable attribute reduction approach for fuzzy rough set[J].Journal of Nanjing University of Science and Technology,2018,42(04):68.[doi:10.14177/j.cnki.32-1397n.2018.42.01.010]
[2]方 宇,高 磊,刘忠慧,等.基于三支决策的广义代价敏感近似属性约简[J].南京理工大学学报(自然科学版),2019,43(04):481.[doi:10.14177/j.cnki.32-1397n.2019.43.04.015]
 Fang Yu,Gao Lei,Liu Zhonghui,et al.Generalized cost-sensitive approximate attributereduction based on three-way decisions[J].Journal of Nanjing University of Science and Technology,2019,43(04):481.[doi:10.14177/j.cnki.32-1397n.2019.43.04.015]

备注/Memo

备注/Memo:
收稿日期:2016-03-01 修回日期:2016-05-04
基金项目:国家自然科学基金(61572242,61272419,61305058,61373062); 江苏省青蓝工程人才项目; 中国博士后科学基金(2014M550293)
作者简介:王宇(1992-),男,硕士生,主要研究方向:粗糙集理论,E-mail:liuyuedewangchao@163.com; 通讯作者:杨习贝(1980-),男,博士后,副教授,主要研究方向:粗糙集理论、粒计算、机器学习,E-mail:zhenjiangyangxibei@163.com。
引文格式:王宇,杨志荣,杨习贝.决策粗糙集属性约简:一种局部视角方法[J].南京理工大学学报,2016,40(4):444-449.
投稿网址::http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-06-30