[1]尹华一,朱顺痣,刘利钊,等.改进的萤火虫算法及其工程应用[J].南京理工大学学报(自然科学版),2016,40(06):653.[doi:10.14177/j.cnki.32-1397n.2016.40.06.003]
 Yin Huayi,Zhu Shunzhi,Liu Lizhao,et al.Modified firefly algorithm and its engineering applications[J].Journal of Nanjing University of Science and Technology,2016,40(06):653.[doi:10.14177/j.cnki.32-1397n.2016.40.06.003]
点击复制

改进的萤火虫算法及其工程应用
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年06期
页码:
653
栏目:
出版日期:
2016-12-30

文章信息/Info

Title:
Modified firefly algorithm and its engineering applications
文章编号:
1005-9830(2016)06-0653-08
作者:
尹华一1朱顺痣1刘利钊1张千宏2
1.厦门理工学院 计算机与信息工程学院,福建 厦门 361024; 2.贵州财经大学 数学与统计学院,贵州 贵阳 550025
Author(s):
Yin Huayi1Zhu Shunzhi1Liu Lizhao1Zhang Qianhong2
1.School of Computer and Information Engineering,Xiamen University of Technology, Xiamen 361024,China; 2.School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guizhou 550025,China
关键词:
萤火虫算法 反向学习 高斯混沌扰动 工程优化
Keywords:
firefly algorithm opposite learning Gaussian chaos disturbance engineering optimization
分类号:
TP301.6
DOI:
10.14177/j.cnki.32-1397n.2016.40.06.003
摘要:
针对萤火虫算法存在易出现早熟收敛、后期收敛慢和精度低等问题,提出1种改进的萤火虫算法。采用反向学习策略对群体中个体位置进行初始化。引入Rosenbrock搜索以加快算法收敛和增强求解精度。对当前群体中最优萤火虫个体进行高斯混沌扰动以防止出现早熟收敛现象。选取6个标准函数进行仿真实验,并对2个标准工程应用问题进行求解。结果表明,该改进的萤火虫算法具有较强的全局优化性能。
Abstract:
A modified firefly algorithm is proposed aiming at the disadvantages of firefly algorithm such as premature convergence,slow convergence speed at a later stage and low solving precision.The individual location of groups is initialized by using the opposite learning strategy.Convergence speed and solving precision are improved by using Rosenbrock search.Premature convergence is prevented by using a Gaussian chaos disturbance on the global optimum individual of each generation.Six standard functions are selected for simulation experiments,and two standard engineering applications are solved.The results show that this modified firefly algorithm has good global optimization performance.

参考文献/References:

[1] 汤可宗,杨静宇,高尚,等.一种改进的求解多目标优化问题的进化算法[J].南京理工大学学报,2010,34(4):464-469.
Tang Kezong,Yang Jingyu,Gao Shang,et al.Improved evolutionary algorithm for multi-objective optimization problems[J].Journal of Nanjing University of Science and Technology,2010,34(4):464-469.
[2]Mirjalili S,Lewis A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95(5):51-67.
[3]施展,陈庆伟.基于改进的多目标量子行为粒子群优化算法的多无人机协同任务分配[J].南京理工大学学报,2012,36(6):945-951.
Shi Zhan,Chen Qingwei.Cooperative task allocation for multiple UAVs based on improved multi-objective quantum-behaved particle swarm optimization algorithm[J].Journal of Nanjing University of Science and Technology,2012,36(6):945-951.
[4]Li Xiangtao,Wang Jianan,Yin Minghao.Enhancing the performance of cuckoo search algorithm using orthogonal learning method[J].Neural Computing and Applications,2014,24(6):1233-1247.
[5]Yang Xinshe.Firefly algorithms for multimodal optimization[C]//Proceedings of the 5th International Conference on Stochastic Algorithms:Foundations and Applications.Sapporo,Japan:Springer-Verlag Berlin,Heidelberg,2009:169-178.
[6]Gandomi A H,Yang X S,Alavi A H.Mixed variable structural optimization using firefly algorithm[J].Computers & Structures,2011,89(23-24):2325-2336.
[7]Banati H,Bajaj M.Firefly algorithm based feature selection approach[J].International Journal of Computer Science Issues,2011,8(2):473-480.
[8]Horng M H,Liou R J.Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J].Expert Systems with Applications,2011,38(12):14805-14811.
[9]Falcon R,Almeida M,Nayak A.Fault identification with binary adaptive fireflies in parallel and distributed systems[C]//IEEE Congress on Evolutionary Computation.New Orleans,USA:IEEE Press,2011:1359-1366.
[10]龙文,蔡绍洪,焦建军,等.求解约束优化问题的萤火虫算法及其工程应用[J].中南大学学报(自然科学版),2015,46(4):1260-1267.
Long Wen,Cai Shaohong,Jiao Jianjun,et al.Firefly algorithm for solving constrained optimization problems and engineering applications[J].Journal of Central South University(Science and Technology),2015,46(4):1260-1267.
[11]Gandomi A H,Yang X S,Talatahari S,et al.Couple eagle strategy and differential evolution for unconstrained and constrained global optimization[J].Computers and Mathematics with Applications,2012,63(1):191-200.
[12]Haupt R,Haupt S.Practical genetic algorithm[M].New York,USA:John Wiley & Sons,2004.
[13]Deb K.An efficient constraint handling method for genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2-4):311-338.
[14]Coello C A C.Use of a self-adaptive penalty approach for engineering optimization problems[J].Computers in Industry,2000,41(2):113-127.
[15]Coello C A C,Mezura-Montes E.Constraint-handling in genetic algorithms through the use of dominance-based tournament selection[J].Advanced Engineering Informatics,2002,16(3):615-621.
[16]Huang Fuzhuo,Wang Ling,He Qie.An effective co-evolutionary differential evolution for constrained optimization[J].Applied Mathematics and Computation,2007,186(1):340-356.
[17]Sadollah A,Bahreininejad A,Eskandar H,et al.Mine blast algorithm:A new population based algorithm for solving constrained engineering optimization problems[J].Applied Soft Computing,2013,13(5):2592-2612.
[18]Wang Yong,Cai Zixing,Zhou Yuren.Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization[J].International Journal for Numerical Methods in Engineering,2009,77(11):1501-1534.
[19]Eskandar H,Sadollah A,Bahreininejad A,et al.Water cycle algorithm — a novel metaheuristic optimization method for solving constrained engineering optimization problems[J].Computers and Structures,2012,110-111(2):151-166.
[20]Coello C A C,Becerra R L.Efficient evolutionary optimization through the use of a cultural algorithm[J].Engineering Optimization,2004,36(2):219-236.
[21]Zahara E,Kao Y T.Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems[J].Expert Systems with Applications,2009,36(2):3880-3886.
[22]He Qie,Wang Ling.A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization[J].Applied Mathematics and Computation,2007,186(2):1407-1422.

备注/Memo

备注/Memo:
收稿日期:2016-04-06 修回日期:2016-06-22
基金项目:国家自然科学基金(61503316; 61373147; 11361012); 福建省科技计划对外合作项目(2016I0015); 厦门市科技局高校对接企业项目(3502Z20153020); 厦门理工学院高层次人才项目(YKJ13026R)
作者简介:尹华一(1980-),男,博士,讲师,主要研究方向:智能优化算法、多Agent序贯决策、系统工程,E-mail:huayi@xmut.edu.cn; 通讯作者:刘利钊(1983-),男,博士,副教授,主要研究方向:智能优化算法、控制理论与控制工程,E-mail:LLZ@xmut.edu.cn。
引文格式:尹华一,朱顺痣,刘利钊,等.改进的萤火虫算法及其工程应用[J].南京理工大学学报,2016,40(6):653-660.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-12-30