[1]郭 晛,章定国.柔性多体系统动力学典型数值积分方法的比较研究[J].南京理工大学学报(自然科学版),2016,40(06):726.[doi:10.14177/j.cnki.32-1397n.2016.40.06.014]
 Guo Xian,Zhang Dingguo.Comparative study of typical numerical integration methods of flexible multi-body systems dynamics[J].Journal of Nanjing University of Science and Technology,2016,40(06):726.[doi:10.14177/j.cnki.32-1397n.2016.40.06.014]
点击复制

柔性多体系统动力学典型数值积分方法的比较研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年06期
页码:
726
栏目:
出版日期:
2016-12-30

文章信息/Info

Title:
Comparative study of typical numerical integration methods of flexible multi-body systems dynamics
文章编号:
1005-9830(2016)06-0726-08
作者:
郭 晛章定国
南京理工大学 理学院,江苏 南京 210094
Author(s):
Guo XianZhang Dingguo
School of Sciences,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
柔性多体系统 动力学 数值积分 中心刚体-柔性悬臂梁系统 第二类拉格朗日方程 显式方法 隐式方法 时间步长 广义质量阵
Keywords:
flexible multibody systems dynamics numerical integration hub-flexible beam system Lagrange's equations of the second kind explicit methods implicit methods time step generalized mass matrices
分类号:
O313.7
DOI:
10.14177/j.cnki.32-1397n.2016.40.06.014
摘要:
为合理选用积分方法,对柔性多体系统动力学中8种典型的数值积分方法的性能进行了比较研究。以中心刚体-柔性悬臂梁系统为研究对象,运用第二类拉格朗日方程建立系统高次耦合动力学模型。采用8种典型的数值积分方法对方程进行求解,比较了计算效率、数值精度等。结果表明:显式方法较隐式方法更依赖于时间步长的选取; 在同等时间步长下,隐式方法的计算效率低于显式方法,隐式方法可以通过放大时间步长提高计算效率; 自启动自动变步长且自动变阶的吉尔(Gear)法计算效率高且其更合适于计算广义质量阵为常元素阵的动力学方程; 希尔伯特-修斯-泰勒(HHT)法、广义-α法可以通过放大时间步长提高计算效率,但计算精度降低。
Abstract:
The performance of eight typical numerical integration methods of flexible multi-body systems dynamics is compared for reasonable selection.A hub-flexible beam system is studied,and a high order coupling model is built using Lagrange's equations of the second kind.The equations are solved using eight typical numerical integration methods,and the computational efficiency and computational accuracy are compared.Results show that compared with the implicit methods,the explicit methods depend on time step more; the computation efficiency of the implicit methods is lower than that of the explicit methods at same time step,the implicit methods can improve computation efficiency by amplifying the time step; the Gear method has an extremely high efficiency and is more suitable for the dynamic equations with generalized mass matrices as constant mass matrices; the Hilber-Hughes-Taylor(HHT)method and the generalized-α method can improve computation efficiency by amplifying the time step,but the computational accuracy is lower.

参考文献/References:

[1] 《现代应用数学手册》编委会.现代应用数学手册:计算与数值分析卷[M].北京:清华大学出版社,2005.
[2]袁兆鼎,费景高,刘德贵.刚性微分方程初值问题的数值解法[M].北京:科学出版社,1987.
[3]冯伯培.解一般或刚性常微分方程初值问题的Gear方法[J].数值计算和计算机应用,1982,3(1):12-23.
Feng Baipei.The Gear program for solving initial value problems in general or stiff ordinary differential equations[J].Journal of Numerical Methods and Computer Applications,1982,3(1):12-23.
[4]刘运华.刚性方程二阶Gear方法的注记[J].北京航天航空大学学报,1990(3):83-92.
Liu Yunhua.A note on the second order Gear's method for stiff differential equation[J].Journal of Beijing University of Aeronautics and Astronautics,1990(3):83-92.
[5]徐士良.常用算法程序集[M].北京:清华大学出版社,2004.
[6]Gear C W.Numerical initial value problems in ordinary differential equation[M].Englewood Cliffs,NJ,USA:Prentice-Hall Inc,1971.
[7]潘振宽,孙红旗,臧宏文,等.柔性多体系统动力学Stiff微分方程数值积分方法[J].青岛大学学报,1996,11(3):36-39.
Pan Zhenkuan,Sun Hongqi,Zang Hongwen,et al.Numerical methods for stiff differential equations of flexible multibody system dynamics[J].Journal of Qingdao University,1996,11(3):36-39.
[8]王琪,黄克累,陆启韶.树形多体系统动力学的隐式数值算法[J].力学学报,1996,28(6):717-725.
Wang Qi,Huang Kelei,Lu Qishao.Implicit numerical algorithm for multibody dynamics with open loop systems[J].Chinese Journal of Theoretical and Applied Mechanics,1996,28(6):717-725.
[9]刘树青,王兴松.基于零空间法的柔性多体系统动力学计算及仿真[J].东南大学学报,2010,40(6):1348-1352.
Liu Shuqing,Wang Xingsong.Dynamics calculation and simulation of flexible multi-body system based on null-space method[J].Journal of Southeast University,2010,40(6):1348-1352.
[10]丁洁玉,潘振宽.非完整约束多体系统时间离散变分积分法[J].动力学与控制学报,2011,9(4):289-292.
Ding Jieyu,Pan Zhenkuan.Time-discrete variational integrator for multibody dynamic systems with nonholonomic constraints[J].Journal of Dynamics and Control,2011,9(4):289-292.
[11]吴锋,高强,钟万勰.刚-柔体动力学方程的保辛摄动迭代法[J].应用数学和力学,2014,35(4):341-352.
Wu Feng,Gao Qiang,Zhong Wanxie.Iterative symplectic perturbation method for the dynamic analysis of rigid-flexible bodies equations[J].Applied Mathematics and Mechanics,2014,35(4):341-352.
[12]谭述君,高强,钟万勰.Duhamel项的精细积分方法在非线性微分方程数值求解中的应用[J].计算力学学报,2010,27(5):752-758.
Tan Shujun,Gao Qiang,Zhong Wanxie.Applications of Duhamel term's precise integration method in solving nonlinear differential equations[J].Chinses Journal of Computational Mechanics,2010,27(5):752-758.
[13]潘科琪,刘锦阳.热冲击下的复合材料壳刚柔耦合动力学研究[J].振动与冲击,2013,32(16):1-6.
Pan Keqi,Liu Jinyang.Rigid-flexible coupling dynamics of composite shell considering thermal shock[J].Journal of Vibration and Shock,2013,32(16):1-6.
[14]陈思佳,章定国,洪嘉振.大变形旋转柔性梁的一种高次刚柔耦合动力学模型[J].力学学报,2013,45(2):251-256.
Chen Sijia,Zhang Dingguo,Hong Jiazhen.A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation[J].Chinese Journal of Theoretical and Applied Mechanics.2013,45(2):251-256.
[15]钱震杰,章定国,刘俊,等.柔性杆柔性铰机器人碰撞动力学建模与仿真[J].南京理工大学学报,2013,37(3):415-421.
Qian Zhenjie,Zhang Dingguo,Liu Jun,et al.Impact dynamic modeling and simulation of robots with flexible links and flexible joints[J].Journal of Nanjing University of Science and Technology,2013,37(3):415-421.
[16]Li Liang,Zhang Dingguo,Zhu Weidong.Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect[J].Journal of Sound and Vibration,2014,333(5):1526-1541.
[17]Newmark N M.A method of computation for structural dynamics[J].Journal of the Engineering Mechanics Division,1959,85(3):67-94.
[18]Hilber H,Hughes T,Taylor R.Improved numerical dissipation for time integration algorithms in structural dynamics[J].Earthquake Engineering & Structural Dynamics,1977,5(2):283-292.
[19]Negrut D,Rampalli R,Ottarsson G,et al.On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics[J].Journal of Computational and Nonlinear Dynamics,2007,2(1):73-85.
[20]Brüls O,Golinval J C.The generalized-α method in mechatronic applications[J].Zeitschrift für Angewandte Mathematik und Mechanik(ZAMM),2006,86(10):748-758.
[21]Jay L O,Negrut D.A second order extension of the generalized-α method for constrained systems in mechanics[J].Multibody Dynamics,2007:143-158.
[22]Chung J,Hulbert G M.A time integration algorithm for structural dynamics with improved numerical dissipation:The generalized-α method[J].Journal of Applied Mechanics,1993,60(2):371-375.
[23]于开平,邹经湘.结构动力响应数值算法耗散和超调特性设计[J].力学学报,2005,37(4):467-476.
Yu Kaiping,Zou Jingxiang.Two time integral algorithms with numerical dissipation and without overshoot for structural dynamic[J].Chinese Journal of Theoretical and Applied Mechanics,2005,37(4):467-476.
[24]Arnold M,Brüls O.Convergence of the generalized-α scheme for constrained mechanical systems[J].Multibody System Dynamics,2007,18(2):185-202
[25]Erlicher S,Bonaventura L,Brüls O.The analysis of the generalized-α method for nonlinear dynamic problems[J].Computational Mechanics,2002,28(2):83-104.
[26]Géradin M,cardona A.Flexible multibody dynamics:A finite element approach[M].New York,USA:Wiley,2001.
[27]Gobat J I,Grosenbaugh M A,Triantafyllou M S.Generalized-α time integration solutions for hanging chain dynamics[J].Journal of Engineering Mechanics,2002,128(6):677-687.
[28]吴胜宝,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析[J].振动工程学报,2011,24(1):1-7.
Wu Shengbao,Zhang Dingguo.Rigid-flexible coupling dynamic analysis of hub-flexible beam with large over all motion[J].Journal of Vibration Engineering,2011,24(1):1-7.
[29]刘锦阳,洪嘉振.柔性体的刚-柔耦合动力学分析[J].固体力学学报,2002,23(2):159-166.
Liu Jinyang,Hong Jiazhen.Rigid-flexible coupling dynamic analysis of flexible body[J].Acta Mechanica Solida Sinica,2002,23(2):159-166.

相似文献/References:

[1]王光建,褚志刚.齿轮减速器-高速凸轮系统动力学建模与仿真[J].南京理工大学学报(自然科学版),2012,36(03):511.
 WANG Guang-jian,CHU Zhi-gang.Dynamic Modeling and Simulation of High-speed Cam with Gear Reducer[J].Journal of Nanjing University of Science and Technology,2012,36(06):511.
[2]段玥晨,章定国.基于弹塑性接触的柔性多体系统碰撞动力学[J].南京理工大学学报(自然科学版),2012,36(02):189.
 DUAN Yue-chen,ZHANG Ding-guo.Flexible Multibody System Impact Dynamics Based on Elastic-plastic Contact[J].Journal of Nanjing University of Science and Technology,2012,36(06):189.
[3]陈思佳,章定国.带有载荷的柔性杆柔性铰机器人刚柔耦合动力学分析[J].南京理工大学学报(自然科学版),2012,36(01):182.
 CHEN Si-jia,ZHANG Ding-guo.Rigid-flexible Coupling Dynamics of Flexible-link and Flexible-joint Robots Carrying Payload[J].Journal of Nanjing University of Science and Technology,2012,36(06):182.
[4]王克义,张立勋,孟浩,等.1R2T绳索牵引并联康复机器人绳索弹性研究[J].南京理工大学学报(自然科学版),2010,(05):602.
 WANG Ke-yi,ZHANG Li-xun,MENG Hao.Elasticity of 1R2T Wire-driven Parallel Rehabilitation Robots[J].Journal of Nanjing University of Science and Technology,2010,(06):602.
[5]闻泉,王雨时.引信球转子动力学特性模拟试验[J].南京理工大学学报(自然科学版),2009,(01):100.
 WEN Quan,WANG Yu-shi.Simulation Experiment on Dynamics Performance of Fuze Ball Rotors[J].Journal of Nanjing University of Science and Technology,2009,(06):100.
[6]娄 瑞,武书彬,谭 扬,等.毛竹酶解/温和酸解木素的热解特性[J].南京理工大学学报(自然科学版),2009,(06):824.
 LOU Rui,WU Shu-bin,TAN Yang,et al.Pyrolysis Characteristics of Bamboo Enzymatic/Mild Acidolysis Lignin[J].Journal of Nanjing University of Science and Technology,2009,(06):824.
[7]宋秀兰,冀文侃,张栋,等.固定化胶质红环菌降解吡啶的研究[J].南京理工大学学报(自然科学版),2008,(04):522.
 SONG Xiu-lan,JI Wen-kan,ZHANG Dong,et al.Biodegradation of Pyridine by Immobilized Rhodocyclus Gelatinosus[J].Journal of Nanjing University of Science and Technology,2008,(06):522.
[8]张翔,刘金盾,张浩勤,等.废水高温厌氧消化动力学研究[J].南京理工大学学报(自然科学版),2008,(04):526.
 ZHANG Xiang,LIU Jin-dun,ZHANG Hao-qin,et al.Kinetics of Thermophilic Anaerobic Digestion of Cattle Manure Wastewater[J].Journal of Nanjing University of Science and Technology,2008,(06):526.
[9]蔡文勇,陈运生,杨国来,等.车载火炮炮口扰动影响因素分析[J].南京理工大学学报(自然科学版),2005,(06):658.
 CAI Wen-yong,CHEN Yun-sheng,YANG Guo-lai.Impacts of Structural Parameters on Muzzle Disturbance for a Vehicle Mounted Howitzer[J].Journal of Nanjing University of Science and Technology,2005,(06):658.
[10]张龙,王昌明.水下枪发射机构的运动与动力特性研究[J].南京理工大学学报(自然科学版),2004,(06):575.
 ZHANG Long,WANG Chang-ming.Kinematic and Dynamic Performances of Underwater Pistol[J].Journal of Nanjing University of Science and Technology,2004,(06):575.

备注/Memo

备注/Memo:
收稿日期:2016-03-09 修回日期:2016-09-09
基金项目:国家自然科学基金(11272155; 11132007)
作者简介:郭晛(1988-),女,博士生,主要研究方向:一般力学与力学基础,E-mail:guoxian88617@163.com; 通讯作者:章定国(1967-),男,博士,教授,博士生导师,主要研究方向:一般力学与力学基础,E-mail:zhangdg419@ njust.edu.cn。
引文格式:郭晛,章定国.柔性多体系统动力学典型数值积分方法的比较研究[J].南京理工大学学报,2016,40(6):726-733.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2016-12-30