参考文献/References:
[1] 王飞,钱玉文,王执铨.基于无监督聚类算法的入侵检测[J].南京理工大学学报,2009,33(2):288-293.
Wang Fei,Qian Yuwen,Wang Zhiquan.Intrusion detection based on unsupervised clustering algorithm[J].Journal of Nanjing University of Science and Technology,2009,33(2):288-293.
[2]Denning D E.An intrusion detection model[J].IEEE Transactions on Software Engineering,2010,13(2):222-232.
[3]赵军.基于CEGA-SVM 的网络入侵检测算法[J].计算机工程,2009,35(23):166-167.
Zhao Jun.Network intrusion detection algorithm based on CEGA-SVM[J].Computer Engineering,2009,35(23):166-167.
[4]夏永祥,史意才.基于GPU和特征选择的SVM入侵检测模型[J].计算机工程,2012,38(8):111-113.
Xia Yongxiang,Shi Yicai.SVM intrusion detection model based on GPU and feature selection[J].Computer Engineering,2012,38(8):111-113.
[5]陈友,程学旗,李洋,等.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651.
Chen You,Cheng Xueqi,Li Yang,et al.Lightweight intrusion detection system based on feature selection[J].Journal of Software,2007,18(7):1639-1651.
[6]赵夫群.基于混合核函数的LSSVM网络入侵检测方法[J].现代电子技术,2015,38(21):96-99.
Zhao Fuqun.Detection method of LSSVM network intrusion based on hybrid kernel function[J].Modern Electronics Technique,2015,38(21):96-99.
[7]张宗飞.基于量子进化算法的网络入侵检测特征选择[J].计算机应用,2013,33(5):1357-1361.
Zhang Zongfei.Feature selection for network intrusion detection based on quantum evolutionary algorithm[J].Journal of Computer Applications,2013,33(5):1357-1361.
[8]井小沛,汪厚祥,聂凯,等.面向入侵检测的基于IMGA和MKSVM的特征选择算法[J].计算机科学,2012,39(7):96-101.
Jing Xiaopei,Wang Houxiang,Nie Kai,et al.Feature selection algorithm based on IMGA and MKSVM to intrusion detection[J].Computer Science,2012,39(7):96-101.
[9]Ding Zhiguo,Fei Minrui,Ma Haiping.Ensemble selection method based on biogeography-based optimization algorithm[J].Journal of System Simulation,2014,26(5):996-999.
[10]樊爱宛,时合生.基于特征选择和SVM参数同步优化的网络入侵检测[J].北京交通大学学报,2013,37(5):58-61.
Fan Aiwan,Shi Hesheng.Network intrusion detection based on simultaneous optimization of features selection and parameters of support vector machine[J].Journal of Beijing Jiaotong University,2013,37(5):58-61.
[11]向昌盛,张林峰.PSO-SVM在网络入侵检测中的应用[J].计算机工程与设计,2013,34(4):1222-1225.
Xiang Changshen,Zhang Linfeng.Application of support vector machine optimized by particle swarm optimization algorithm in network intrusion detection[J].Computer Engineering and Design,2013,34(4):1222-1225.
[12]朱红萍,巩青歌,雷战波.基于遗传算法的入侵检测特征选择[J].计算机应用研究,2012,29(4):1417-1419.
Zhu Hongping,Gong Qingge,Lei Zhanbo.Feature selection of intrusion detection based on genetic algorithm[J].Application Research of Computers,2012,29(4):1417-1419.
[13]张国辉,聂黎,张利平.生物地理学优化算法理论及其应用研究综述[J].计算机工程与应用,2015,51(3):12-17.
Zhang Guohui,Nie Li,Zhang Liping.Review on biogeography-based optimization algorithm and applications[J].Computer Engineering and Applications,2015,51(3):12-17.
[14]Panchal V,Singh P,Kaur N,Kundra H.Biogeography based satellite image classification[J].International Journal of Computer Science and Information Security,2009,6(2):269-274.
相似文献/References:
[1]袁家斌,浦海晨.基于遗传算法优化的神经网络电子邮件信息分类器的研究[J].南京理工大学学报(自然科学版),2008,(01):78.
YUAN Jia-bin,PU Hai-chen.E-mail Information Classifier of Neural Network Based on Genetic Algorithm Optimization[J].Journal of Nanjing University of Science and Technology,2008,(01):78.
[2]赵海涛,金忠.一种改进的最佳鉴别平面[J].南京理工大学学报(自然科学版),2000,(01):88.
ZhaoHaitao JinZhong.An Improved Optimal Discriminant Plane[J].Journal of Nanjing University of Science and Technology,2000,(01):88.
[3]黄 伟,陈 昊,郭雅娟,等.基于集成分类的恶意应用检测方法[J].南京理工大学学报(自然科学版),2016,40(01):35.
Huang Wei,Chen Hao,Guo Yajuan,et al.Mobile malware detection approach using ensemble classification[J].Journal of Nanjing University of Science and Technology,2016,40(01):35.
[4]张前进,王华东.基于核典型相关分析和支持向量机的语音情感识别模型[J].南京理工大学学报(自然科学版),2017,41(02):191.[doi:10.14177/j.cnki.32-1397n.2017.41.02.009]
Zhang Qianjin,Wang Huadong.Speech emotion recognition model based on kernel canonicalcorrelation analysis and support vector machine[J].Journal of Nanjing University of Science and Technology,2017,41(01):191.[doi:10.14177/j.cnki.32-1397n.2017.41.02.009]
[5]张佳欢,李磊军,李美争,等.基于变精度邻域粗糙集的多标记子空间研究[J].南京理工大学学报(自然科学版),2019,43(04):414.[doi:10.14177/j.cnki.32-1397n.2019.43.04.006]
Zhang Jiahuan,Li Leijun,Li Meizheng,et al.Research on multi-label subspace based on variableprecision neighborhood rough sets[J].Journal of Nanjing University of Science and Technology,2019,43(01):414.[doi:10.14177/j.cnki.32-1397n.2019.43.04.006]
[6]陈 红,马盈仓,杨小飞,等.包含标签信息的最小二乘多标签特征选择算法[J].南京理工大学学报(自然科学版),2019,43(04):423.[doi:10.14177/j.cnki.32-1397n.2019.43.04.007]
Chen Hong,Ma Yingcang,Yang Xiaofei,et al.Least squares multi-label feature selection algorithmwith label information[J].Journal of Nanjing University of Science and Technology,2019,43(01):423.[doi:10.14177/j.cnki.32-1397n.2019.43.04.007]