[1]宋传静,张 毅.时间尺度上Lagrange系统对称性摄动与绝热不变量[J].南京理工大学学报(自然科学版),2017,41(02):181.[doi:10.14177/j.cnki.32-1397n.2017.41.02.007]
 Song Chuanjing,Zhang Yi.Perturbation to symmetry and adiabatic invariant for Lagrangiansystem on time scale[J].Journal of Nanjing University of Science and Technology,2017,41(02):181.[doi:10.14177/j.cnki.32-1397n.2017.41.02.007]
点击复制

时间尺度上Lagrange系统对称性摄动与绝热不变量()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年02期
页码:
181
栏目:
出版日期:
2017-04-30

文章信息/Info

Title:
Perturbation to symmetry and adiabatic invariant for Lagrangiansystem on time scale
文章编号:
1005-9830(2017)02-0181-05
作者:
宋传静1张 毅12
1.南京理工大学 理学院,江苏 南京 210094; 2.苏州科技大学 土木工程学院,江苏 苏州 215011
Author(s):
Song Chuanjing1Zhang Yi12
1.School of Science,Nanjing University of Science and Technology,Nanjing 210094,China; 2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China
关键词:
对称性摄动 绝热不变量 Lagrange系统 时间尺度
Keywords:
perturbation to symmetry adiabatic invariants Lagrangian system time scales
分类号:
O316
DOI:
10.14177/j.cnki.32-1397n.2017.41.02.007
摘要:
为了揭示小扰动作用下对称性的改变与其不变量之间的内在关系,该文研究了时间尺度上Lagrange系统的Noether对称性摄动与绝热不变量问题。给出了时间尺度上Lagrange系统的运动微分方程、Noether对称性与精确不变量,还给出了绝热不变量的定义,研究了时间尺度上Lagrange系统的绝热不变量。最后举例说明了结果的应用,证明了该文方法及结果的适用性。
Abstract:
In order to reveal the internal relationships between the symmetry change and the invariant under the small disturbance,the perturbation to the Noether symmetry and adiabatic invariants for Lagrangian systems on time scales are studied in this paper.The differential equations of motion,the Noether symmetry and exact invariant for Lagrangian systems on time scales are presented.The definition of the adiabatic invariant on time scales is given,and the perturbation to the Noether symmetry and adiabatic invariants for Lagrangian systems on time scales are investigated.Finally,an example is given to illustrate the method and results.

参考文献/References:

[1] Hilger S.Ein Ma?kettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten[D].Würzburg,Deutschland:Universit?t Würzburg,1988.
[2]Bohner M.Calculus of variations on time scales[J].Dynamic Systems & Applications,2004,13(12):339-349.
[3]Bartosiewicz Z,Torres D F M.Noether’s theorem on time scales[J].Journal of Mathematical Analysis and Applications,2008,342(2):1220-1226.
[4]Bartosiewicz Z,Martins N,Torres D F M.The second Euler-Lagrange equation of variational calculus on time scales[J].European Journal of Control,2011,17(1):9-18.
[5]Malinowska A B,Ammi M R S.Noether’s theorem for control problems on time times[J].International Journal of Difference Equations,2014,9(1):87-100.
[6]Malinowska A B,Martins N.The second Noether theorem on time scales[J].Abstract and Applied Analysis,2013,2013(1-2):675127.
[7]Martins N,Torres D F M.Noether’s symmetry theorem for nabla problems of the calculus of variations[J].Applied Mathematics Letters,2010,23(12):1432-1438.
[8]Cai Pingping,Fu Jingli,Guo Yongxin.Noether symmetries of the nonconservative and nonholonomic systems on time scales[J].Science China:Physics,Mechanics & Astronomy,2013,56(5):1017-1028.
[9]Peng Keke,Luo Yiping.Dynamics symmetries of Hamiltonian system on time scales[J].Journal of Mathematical Physics,2014,55(4):042702.
[10]Song Chuanjing,Zhang Yi.Noether theorem for Birkhoffian systems on time scales[J].Journal of Mathematical Physics,2015,56(10):102701.
[11]张毅.时间尺度上Hamilton系统的Noether理论[J].力学季刊,2016,37(2):214-224.
Zhang Yi.Noether theory for Hamiltonian system on time scales[J].Chinese Quarterly of Mechanics,2016,37(2):214-224.
[12]Bohner M,Peterson A.Dynamic equations on time scales-an introduction with applications[M].Boston,US:Birkh?user,2001.
[13]赵跃宇,梅凤翔.力学系统的对称性与不变量[M].北京:科学出版社,1999.

备注/Memo

备注/Memo:
收稿日期:2016-04-22 修回日期:2016-09-18
基金项目:国家自然科学基金(11272227; 11572212); 江苏省高校研究生创新计划(KYLX15_0405)
作者简介:宋传静(1987-),女,博士生,主要研究方向:分析力学,E-mail:songchuanjingsun@126.com; 通讯作者:张毅(1964-),男,教授,博士生导师,主要研究方向:分析力学,E-mail:zhy@mail.usts.edu.cn。
引文格式:宋传静,张毅.时间尺度上Lagrange系统对称性摄动与绝热不变量[J].南京理工大学学报,2017,41(2):181-185.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-04-30