[1]陈家益,黄 楠,熊刚强,等.基于置信区间的自适应加权均值滤波算法[J].南京理工大学学报(自然科学版),2017,41(03):307.[doi:10.14177/j.cnki.32-1397n.2017.41.03.006]
 Chen Jiayi,Huang Nan,Xiong Gangqiang,et al.Adaptive weighted mean filtering algorithm based onconfidence interval[J].Journal of Nanjing University of Science and Technology,2017,41(03):307.[doi:10.14177/j.cnki.32-1397n.2017.41.03.006]
点击复制

基于置信区间的自适应加权均值滤波算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年03期
页码:
307
栏目:
出版日期:
2017-06-30

文章信息/Info

Title:
Adaptive weighted mean filtering algorithm based onconfidence interval
文章编号:
1005-9830(2017)03-0307-06
作者:
陈家益1黄 楠2熊刚强1曹会英1徐秋燕3
1.广东医科大学 信息工程学院,广东 湛江 524023; 2.南京理工大学 理学院,江苏 南京 210094; 3.湛江中心人民医院 外科重症加强护理病房,广东 湛江 524037
Author(s):
Chen Jiayi1Huang Nan2Xiong Gangqiang1Cao Huiying1Xu Qiuyan3
1.School of Information Engineering,Guangdong Medical University,Zhanjiang 524023,China; 2.School of Science,Nanjing University of Science and Technology,Nanjing 210094,China; 3.Surgical Intensive Care Unit,Center People’s Hospital of Zhanjiang,Zhanjiang 524037,China
关键词:
置信区间 均值滤波算法 自适应滤波算法 高斯噪声 灰度相关性 距离相关性
Keywords:
confidence interval mean filtering algorithm adaptive filtering algorithm Gaussian noise gray correlation distance correlation
分类号:
TP391
DOI:
10.14177/j.cnki.32-1397n.2017.41.03.006
摘要:
为了改善图像滤波的效果,提出1种基于置信区间的自适应加权均值滤波算法。根据高斯噪声的特点以及其对原图像的影响,仅对滤波窗口中处于置信区间的像素求加权均值。同时考虑了灰度相关性与距离相关性,将灰度测度因子和距离测度因子进行线性加权求和,得出加权系数。最后对加权均值滤波后的图像进行折中的灰度均衡化。实验结果证明,相对于标准均值滤波(SMF)算法和自适应均值滤波(AMF)算法,该文算法的滤波图像更加清晰,很好地恢复了原图像,同时保留了图像的边缘和细节; 该文算法对应的归一化均方误差明显低于SMF算法和AMF算法。
Abstract:
An adaptive weighted mean filtering algorithm based on a confidence interval is proposed to improve the results of filtered images.The weighted means of the pixels in a filtering window and within the confidence interval are calculated according to the characteristics of Gaussian noise and its effect on an original image.A weighted coefficient is obtained by the linear weighted sum of the gray measure factor and distance measure factor,and the gray correlation and distance correlation are taken into consideration.Finally,the gray of the weighted mean filtered image is equalized.The experimental results show that this algorithm is better than the standard mean filtering(SMF)algorithm and adaptive mean filtering(AMF)algorithm,the filtered image is clearer,the original image is recovered well,and the edges and details are kept; the normalized mean square error(NMSE)of this algorithm is lower than that of the SMF and AMF.

参考文献/References:

[1] Kang Jiayin,Min Lequan,Luan Qingxian,et al.Novel modified fuzzy c-means algorithm with application[J].Digital Signal Processing,2009,19(2):309-319.
[2]Tang Wang,Tang Jin.An improved mean filter algorithm for impulse noise elimination[J].Advanced Material Research,2014,936:2281-2285.
[3]武英,吴海勇.一种自适应图像去噪混合滤波方法[J].计算机工程与应用,2010,46(7):168-170.
Wu Ying,Wu Haiyong.An adaptive mixed filtering algorithm for image denoising[J].Computer Engineering and Application,2010,46(7):168-170.
[4]杨吉宏,胡顺波,张民,等.灰度图像加权有向平滑滤波算法[J].计算机工程与设计,2010,31(1):163-156.
Yang Jihong,Hu Shunbo,Zhang Min,et al.Weighted directional smoothing filtering algorithm for gray image[J].Computer Engineering and Design,2010,31(1):163-156.
[5]Gonzalez R C,Woods R E.Digital image processing[M].Beijing,China:Publishing House of Electronics Industry,2010.
[6]Sakthivel N,Prabhu L.Mean-median filtering for impulsive noise removal[J].International Journal of Basic and Applied Science,2014,2(4):47-57.
[7]Zhang Peixuan,Li Fang.A new adaptive weighted mean filter for removing salt-and-pepper noise[J].IEEE Signal Processing Letters,2014,21(10):1280-1283.
[8]关新平,赵立兴,唐英干.图像去噪混合滤波方法[J].中国图象图形学报,2005,10(3):332-337.
Guan Xinping,Zhao Lixing,Tang Yinggan.Mixed filtering algorithm for image denoising[J].China Journal of Image and Graphics,2005,10(3):332-337.
[9]Fang Jia,Xu Decheng,Fu Xin.An improved hybrid median-mean filter algorithm[J].Applied Mechanics and Materials,2015,701-702:288-292.
[10]Lan Xia,Shen Huanfeng,Zhang Liangpei.An adaptive non-local means filter based on region homogeneity[C]//2013 Seventh International Conference on Image and Graphics.Qingdao,China:ICIG,2013:50-54.
[11]Miao Zhenwei,Jiang Xudong.Weighted iterative truncated mean filter[J].IEEE Transactions on Signal Processing,2013,61(16):4149-4160.
[12]张文娟,康家银.一种用于图像降噪的自适应均值滤波算法[J].小型微型计算机系统,2011,32(12):2495-2498.
Zhang Wenjuan,Kang Jiayin.An adaptive mean filtering algorithm for image denoising[J].Journal of Chinese Computer Systems,2011,32(12):2495-2498.
[13]Zhang Shufang,Zhang Tao,Qu Guangcai,et al.A new adaptive weighted median filter algorithm[J].Energy Procedia,2011,13(5):2987-2993.
[14]陈志敏,薄煜明,吴盘龙,等.收敛粒子群全区域自适应粒子滤波算法及其应用[J].南京理工大学学报,2012,36(5):861-686.
Chen Zhimin,Bo Yuming,Wu Panlong,et al.Adaptive particle filtering algorithm and its application of convergence particle swarm region[J].Journal of Nanjing University of Science and Technology,2012,36(5):861-686.
[15]Singh C,Chauhan R P S,Singh D.Comparative study of image enhancement using median and high pass filtering methods[J].Journal of Information and Operations Management,2012,3(1):96-98.
[16]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2013:46-50.

备注/Memo

备注/Memo:
收稿日期:2016-01-26 修回日期:2016-05-27
基金项目:国家自然科学基金(61170320); 广东省自然科学基金(2015A030310178)
作者简介:陈家益(1983-),男,讲师,主要研究方向:数字信号处理,E-mail:beyond38@163.com; 通讯作者:曹会英(1975-),女,博士,讲师,主要研究方向:物理纳米材料与图像处理,E-mail:hongkongu@163.com。
引文格式:陈家益,黄楠,熊刚强,等.基于置信区间的自适应加权均值滤波算法[J].南京理工大学学报,2017,41(3):307-312.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-06-30