[1]曾文浩,朱晓华,李洪涛,等.基于矩阵填充的子阵重构二维波达方向估计算法[J].南京理工大学学报(自然科学版),2017,41(03):337.[doi:10.14177/j.cnki.32-1397n.2017.41.03.010]
 Zeng Wenhao,Zhu Xiaohua,Li Hongtao,et al.Subarray reconstruction 2D-DOA estimation algorithmbased on matrix completion[J].Journal of Nanjing University of Science and Technology,2017,41(03):337.[doi:10.14177/j.cnki.32-1397n.2017.41.03.010]
点击复制

基于矩阵填充的子阵重构二维波达方向估计算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年03期
页码:
337
栏目:
出版日期:
2017-06-30

文章信息/Info

Title:
Subarray reconstruction 2D-DOA estimation algorithmbased on matrix completion
文章编号:
1005-9830(2017)03-0337-07
作者:
曾文浩1朱晓华1李洪涛1庄珊娜2
1.南京理工大学 电子工程与光电技术学院,江苏 南京 210094; 2.石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043
Author(s):
Zeng Wenhao1Zhu Xiaohua1Li Hongtao1Zhuang Shanna2
1.School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China; 2.School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
关键词:
阵列信号处理 矩阵填充 子阵重构 波达方向估计 稀疏阵列 零空间性质 奇异值分解
Keywords:
array signal processing matrix completion subarray reconstruction direction-of-arrival estimation sparse arrays null space property singular value decomposition
分类号:
TN911.72
DOI:
10.14177/j.cnki.32-1397n.2017.41.03.010
摘要:
为提高稀疏阵列下二维波达方向(2D-DOA)估计的效率,提出1种基于加速近邻梯度矩阵填充的子阵重构旋转子空间(APG-SRESPRIT)算法。建立了基于矩阵填充的稀疏阵列DOA估计信号模型,并验证该信号模型满足零空间性质。通过加速近邻梯度算法将该信号模型恢复为完整信号,划分子阵并构建合并矩阵。对合并矩阵进行奇异值分解,在子阵重构后估计目标角度,且目标角度自动配对。仿真实验表明该文算法可减少70%的阵元数量,且在稀疏阵列下准确估计2D-DOA。
Abstract:
An accelerated proximal gradient singular value thresholding based subarray reconstruct ESPRIT(APG-SRESPRIT)algorithm is proposed to improve the efficiency of two-dimensional direction-of-arrival(2D-DOA)estimation of sparse arrays.A DOA estimation signal model of sparse arrays is built based on matrix completion,and is proved to meet the null space property(NSP).The model is recovered to a complete signal model via accelerated proximal gradient singular value thresholding(APG),and subarrays are reconstructed to build a merged matrix.The singular value decomposition(SVD)of the merged matrix is solved,the target angles are obtained after subarray reconstruction,and the target angles can match automatically.Simulation experiments show that this algorithm can decrease the array number by 70%,and estimate the 2D-DOA of sparse arrays precisely.

参考文献/References:

[1] Zhao Guanghui,Liu Zicheng,Lin Jie,et al.Wideband DOA estimation based on sparse representation in 2-D frequency domain[J].IEEE Sensors Journal,2015,15(1):227-233.
[2]林敏,刘云飞,龚铮权.存在阵元位置误差时的信号DOA估计[J].南京理工大学学报,2003,27(4):381-384.
Lin Min,Liu Yunfei,Gong Zhengquan.Signal DOA estimation with sensor position uncertainties[J].Journal of Nanjing University of Science and Technology,2003,27(4):381-384.
[3]顾陈,何劲,王克让,等.任意分布冲击噪声背景下基于ESPRIT的DOA估计方法[J].南京理工大学学报,2009,33(6):785-789.
Gu Chen,He Jin,Wang Kerang,et al.ESPRIT-based algorithm for DOA estimation in arbitrary distribution impulsive noise environment[J].Journal of Nanjing University of Science and Technology,2009,33(6):785-789.
[4]庄珊娜,贺亚鹏,朱晓华.用于扩展目标检测的OFDM-MIMO雷达波形设计[J].南京理工大学学报,2012,36(2):309-313.
Zhuang Shanna,He Yapeng,Zhu Xiaohua.OFDM-MIMO radar waveform design for extended target detection[J].Journal of Nanjing University of Science and Technology,2012,36(2):309-313.
[5]郑植,李广军,滕云龙.低复杂度相干分布源二维 DOA 解耦估计方法[J].电波科学学报,2010,31(2):527-533.
Zheng Zhi,Li Guangjun,Teng Yunlong.Low-complexity method for the 2D DOA decoupled estimation of coherently distributed sources[J].Chinese Journal of Radio Science,2010 31(2):527-533.
[6]金梁,殷勤业.时空 DOA 矩阵方法[J].电子学报,2000,28(6):8-12.
Jin Liang,Yin Qinye.Space-time DOA matrix method[J].Acta Electronica Sinica,2000,28(6):8-12.
[7]金梁,殷勤业.时空 DOA 矩阵方法的分析与推广[J].电子学报,2001,29(3):300-303.
Jin Liang,Yin Qinye.Analysis and generalization of space-time DOA matrix method[J].Acta Electronica Sinica,2001,29(3):300-303.
[8]Heidenreich P,Zoubir A M,Rubsamen M.Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays[J].IEEE Transactions on Signal Processing,2012,60(9):4683-4693.
[9]Zhang Wei,Liu Wei,Wang Ju,et al.Computationally efficient 2-D DOA estimation for uniform rectangular arrays[J].Multidimensional Systems & Signal Processing,2014,25(4):847-857.
[10]Hu Nan,Ye Zhongfu,Xu Xu,et al.DOA estimation for sparse array via sparse signal reconstruction[J].IEEE Transactions on Aerospace & Electronic Systems,2013,49(2):760-773.
[11]Candes E J,Eldar Y C,Strohmer T,et al.Phase retrieval via matrix completion[J].SIAM Review,2015,57(2):225-251.
[12]Aravkin A,Kumar R,Mansour H,et al.Fast methods for denoising matrix completion formulations,with applications to robust seismic data interpolation[J].SIAM Journal on Scientific Computing,2014,36(5):S237-S266.
[13]Davenport M A,Plan Y,van den Berg E,et al.1-bit matrix completion[J].Information and Inference,2014,3(3):189-223.
[14]Kutyniok G.Compressed sensing:Theory and applications[J].Corr,2012,52(4):1289-1306.
[15]李晖晖,曾艳,杨宁,等.改进的压缩感知重构算法及其在图像融合中的应用[J].南京理工大学学报,2014,38(2):259-263.
Li Huihui,Zeng Yan,Yang Ning,et al.Improved compressed sensing reconstruction algorithm and its application in image fusion[J].Journal of Nanjing University of Science and Technology,2014,38(2):259-263.
[16]Cabral R,De la Torre F,Costeira J P,et al.Matrix completion for weakly-supervised multi-label image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(1):121-135.
[17]Schenck C,Sinapov J,Johnston D,et al.Which object fits best?Solving matrix completion tasks with a humanoid robot[J].IEEE Transactions on Autonomous Mental Development,2014,6(3):226-240.
[18]Toh K C,Yun S.An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems[J].Pacific Journal of Optimization,2010,6(3):615-640.
[19]Klopp O.Noisy low-rank matrix completion with general sampling distribution[J].Bernoulli,2014,20(1):282-303.
[20]Kumar R,Da Silva C,Akalin O,et al.Efficient matrix completion for seismic data reconstruction[J].Geophysics,2015,80(5):97-114.

相似文献/References:

[1]李洪涛,顾陈,朱晓华,等.冲击噪声背景下归一化广义旁瓣相消器[J].南京理工大学学报(自然科学版),2011,(05):677.
 LI Hong-tao,GU Chen,ZHU Xiao-hua,et al.Normalized-generalized Sidelobe Canceller in Impulsive Noise[J].Journal of Nanjing University of Science and Technology,2011,(03):677.
[2]方玉河,李 哲,曹永兴,等.基于导向矢量扩维的稳健波束形成方法[J].南京理工大学学报(自然科学版),2018,42(06):722.[doi:10.14177/j.cnki.32-1397n.2018.42.06.013]
 Yongxing,Zhu Jun,Wang Nan,et al.Robust beamforming based on steering vector extensionFang Yuhe1,2,3,Li Zhe1,2,3,Cao[J].Journal of Nanjing University of Science and Technology,2018,42(03):722.[doi:10.14177/j.cnki.32-1397n.2018.42.06.013]

备注/Memo

备注/Memo:
收稿日期:2016-06-03 修回日期:2016-12-04
作者简介:曾文浩(1990-),男,博士生,主要研究方向:雷达信号处理、阵列信号处理、矩阵填充雷达信号采样与处理等,E-mail:trikona54@163.com; 通讯作者:朱晓华(1966-),男,教授,主要研究方向:雷达系统理论与技术、雷达信号理论与应用、高速实时数字信号处理等,E-mail:zxh@njust.edu.cn。
引文格式:曾文浩,朱晓华,李洪涛,等.基于矩阵填充的子阵重构二维波达方向估计算法[J].南京理工大学学报,2017,41(3):337-343.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-06-30