[1]宋传静,张 毅.时间尺度上Birkhoff系统的delta-nabla积分方程[J].南京理工大学学报(自然科学版),2017,41(03):357.[doi:10.14177/j.cnki.32-1397n.2017.41.03.013]
 Song Chuanjing,Zhang Yi.Delta-nabla integral equations for Birkhoff systems on time scales[J].Journal of Nanjing University of Science and Technology,2017,41(03):357.[doi:10.14177/j.cnki.32-1397n.2017.41.03.013]
点击复制

时间尺度上Birkhoff系统的delta-nabla积分方程()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年03期
页码:
357
栏目:
出版日期:
2017-06-30

文章信息/Info

Title:
Delta-nabla integral equations for Birkhoff systems on time scales
文章编号:
1005-9830(2017)03-0357-07
作者:
宋传静1张 毅2
1.南京理工大学 理学院,江苏 南京 210094; 2.苏州科技大学 土木工程学院,江苏 苏州 215011
Author(s):
Song Chuanjing1Zhang Yi2
1.School of Sciences,Nanjing University of Science and Technology,Nanjing 210094,China; 2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China
关键词:
delta-nabla积分方程 自然边界条件 Birkhoff系统 时间尺度
Keywords:
delta-nabla integral equations natural boundary conditions Birkhoff systems time scales
分类号:
O316
DOI:
10.14177/j.cnki.32-1397n.2017.41.03.013
摘要:
为了研究时间尺度上的Birkhoff系统动力学,该文给出了时间尺度上delta-nabla导数下Birkhoff系统的运动积分方程。该方程是在一定边界条件和自然边界条件下分别进行研究的。时间尺度上delta导数下、nabla导数下Birkhoff系统的运动积分方程均为该方程的特例。对其它若干特例进行了讨论分析。举例说明了结果的应用。
Abstract:
In order to study Birkhoff dynamics on time scales,the integral equations of motion with delta-nabla derivatives on time scales are presented.Those equations are studied under some boundary conditions and natural boundary conditions respectively.The integral equations of motion with delta or nabla derivatives on time scales are particular cases in this paper.Some other special cases of the results are discussed.An example is given to illustrate the application of the results.

参考文献/References:

[1] Hilger S.Ein Ma?kettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten[D].Würzburg,Deutschl-and:Universit?t Würzburg,1988.(in German)
[2]Atici F M,Guseinov G S.On Green’s functions and positive solutions for boundary value problems on time scales[J].Journal of Computational & Applied Mathematics,2002,141(1-2):75-99.
[3]Bohner M.Calculus of variations on time scales[J].Dynamic Systems & Applications,2004,13(12):339-349.
[4]Hilscher R,Zeidan V.Calculus of variations on time scales:Weak local piecewise C1rd solutions with variable endpoints[J].Journal of Mathematical Analysis and Applications,2004,289(1):143-166.
[5]Sarychev A,Shiryaev A,Guerra M,et al.Mathematical control theory and finance[M].Berlin,German:Springer,2008:149-159.
[6]Martins N,Torres D F M.Calculus of variations on time scales with nabla derivatives[J].Nonlinear Analysis:Theory,Methods & Applications,2009,71(12):e763-e773.
[7]Cai Pingping,Fu Jingli,Guo Yongxin.Noether symmetries of the nonconservative and nonholonomic systems on time scales[J].Science China:Physics,Mechanics & Astronomy,2013,56(5):1017-1028.
[8]Peng Keke,Luo Yiping.Dynamics symmetries of Hamiltonian system on time scales[J].Journal of Mathematical Physics,2014,55(4):042702.
[9]Malinowska A B,Ammi M R S.Noether’s theorem for control problems on time scales[J].International Journal of Difference Equations,2014,9(1):87-100.
[10]Martins N,Torres D F M.Noether’s symmetry theorem for nabla problems of the calculus of variations[J].Applied Mathematics Letters,2010,23(12):1432-1438.
[11]Bartosiewicz Z,Torres D F M.Noether’s theorem on time scales[J].Journal of Mathematical Analysis and Applications,2008,342(2):1220-1226.
[12]Malinowska A B,Torres D F M.The delta-nabla calculus of variations[J].Fasciculi Mathematici,2009,44:75-83.
[13]Girejko E,Malinowska A B,Torres D F M.A unified approach to the calculus of variations on time scales[C]//Proceedings of 2010 Chinese Control and Decision Conference.Shenyang,China:Northeastern University Press,2010:595-600.
[14]Torres D F M.The variational calculus on time scales[J].International Journal for Simulation & Multidis-ciplinary Design Optimization,2011,4(1):11-25.
[15]梅凤翔,史荣昌,张永发,等.Birkhoff系统动力学[M].北京:北京理工大学出版社,1996.
[16]梅凤翔.分析力学(II)[M].北京:北京理工大学出版社,2013.
[17]张毅,丁金凤.基于El-Nabulsi分数阶模型的广义Birkhoff系统Noether对称性研究[J].南京理工大学学报,2014,38(3):409-413.
Zhang Yi,Ding Jinfeng.Noether symmetries of generalized Birkhoff systems based on El-Nabulsi fractional model[J].Journal of Nanjing University of Science and Technology,2014,38(3):409-413.
[18]Zhang Hongbin,Gu Shulong.Lie symmetries and conserved quantities of Birkhoff systems with unilateral constraints[J].Chinese Physics B,2002,11(8):765-770.
[19]Cui Jinchao,Liu Shixing,Song Duan.A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems[J].Chinese Physics B,2013,22(10):104501.
[20]Chen Xiangwei,Mei Fengxiang.Constrained mechanical systems and gradient systems with strong Lyapunov functions[J].Mechanics Research Communications,2016,76:91-95.
[21]Luo Shaokai,Xu Yanli.Fractional Birkhoffian mechanics[J].Acta Mechanica,2015,226(3):829-844.
[22]Zhang Yi,Zhai Xianghua.Noether symmetries and conserved quantities for fractional Birkhoffian systems[J].Nonlinear Dynamics,2015,81(1):469-480.
[23]Kong Xinlei,Wu Huibin,Mei Fengxiang.Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms[J].Chinese Physics B,2016,25(1):010203.
[24]Bohner M,Peterson A.Dynamic equations on time scales—An introduction with applications[M].Boston,USA:Birkh?user,2001.
[25]Bohner M,Peterson A.Advances in dynamic equations on time scales[M].Boston,USA:Birkh?user,2003.
[26]Lakshmikantham V,Sivasundaram S,Kaymakcalan B.Dynamic systems on measure chains[M].Dordrecht,Netherlands:Kluwer Academic Publishers,1996.
[27]Gurses M,Guseinov G S,Silindir B.Integrable equations on time scales[J].Journal of Mathematical Physics,2005,46(11):113510.
[28]Song Chuanjing,Zhang Yi.Noether theorem for Birkhoffian systems on time scales[J].Journal of Mathematical Physics,2015,56(10):102701.
[29]张毅.时间尺度上Hamilton系统的Noether理论[J].力学季刊,2016,37(2):214-224.
Zhang Yi.Noether theory for Hamiltonian system on time scales[J].Chinese Quarterly of Mechanics,2016,37(2):214-224.

备注/Memo

备注/Memo:
收稿日期:2016-09-23 修回日期:2017-04-23
基金项目:国家自然科学基金(11272227; 11572212); 江苏省高校研究生创新计划项目(KYLX15_0405)
作者简介:宋传静(1987-),女,博士生,主要研究方向:分析力学,E-mail:songchuanjingsun@126.com; 通讯作者:张毅(1964-),男,博士,教授,主要研究方向:分析力学,E-mail:zhy@ mail.usts.edu.cn。
引文格式:宋传静,张毅.时间尺度上Birkhoff系统的delta-nabla积分方程[J].南京理工大学学报,2017,41(3):357-363.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-06-30