[1]许鸣吉,李 胜,陈庆伟,等.基于自适应模拟退火遗传算法的码垛次序规划方法[J].南京理工大学学报(自然科学版),2017,41(04):486.[doi:10.14177/j.cnki.32-1397n.2017.41.04.014]
 Xu Mingji,Li Sheng,Chen Qingwei,et al.Stacking order planning method based on adaptivesimulated annealing genetic algorithm[J].Journal of Nanjing University of Science and Technology,2017,41(04):486.[doi:10.14177/j.cnki.32-1397n.2017.41.04.014]
点击复制

基于自适应模拟退火遗传算法的码垛次序规划方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年04期
页码:
486
栏目:
出版日期:
2017-08-31

文章信息/Info

Title:
Stacking order planning method based on adaptivesimulated annealing genetic algorithm
文章编号:
1005-9830(2017)04-0486-08
作者:
许鸣吉李 胜陈庆伟郭 健吴益飞
南京理工大学 自动化学院,江苏 南京 210094
Author(s):
Xu MingjiLi ShengChen QingweiGuo JianWu Yifei
School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
直角坐标码垛机器人 码垛次序 决策变量 数学模型 自适应模拟退火遗传算法
Keywords:
rectangular coordinate palletizing robots stacking order decisive variables mathematical models adaptive simulated annealing genetic algorithm
分类号:
TP18; TP301.6
DOI:
10.14177/j.cnki.32-1397n.2017.41.04.014
摘要:
为优化直角坐标码垛机器人码垛次序,节省码垛时间,针对空间中不同类型的物料箱分散堆放与随机选取堆垛位置对拆垛堆垛作业的影响,以拆垛顺序、堆垛顺序、堆垛区域为决策变量,以整个拆垛和堆垛过程总路径最短为目标,构建了物料箱选择与堆垛位置分配的数学模型。将模拟退火算法与遗传算法进行结合改进,设计了基于自适应模拟退火遗传算法的双层启发式算法,对模型进行同步优化,并通过104个物料箱的算例仿真,得到了一组最优的码垛次序。仿真结果表明,与一组随机的码垛次序相比,对物料箱进行选择并对堆垛位置进行分配可以有效缩短工作路径,节省工作时间,模型与算法可行有效。
Abstract:
In order to optimize the robot stacking sequence of rectangular axes and save stacking time,avoid influences like different kinds of material boxes’ random stacking and random position choice on piling work,this paper builds up a mathematical model involving material boxes choice and stacking position distribution and designs a two-level heuristic algorithm based on an adaptively simulated annealing genetic algorithm to solve the problems.We take unstacking sequence,stacking sequence,and stacking area as decisive variables and aim to make the shortest route of stacking and unstacking process.This paper makes simultaneous optimization on the model and gets a set of optimal stacking sequence according to the simulation of 104 material boxes.The simulation results show that,compared with a set of random stacking sequence,material boxes’ choice and stacking position distribution can effectively cut down working route and working time,which means that the model and algorithm are feasible and effective.

参考文献/References:

[1] 钟麦英,汤兵勇.基于电子商务环境的自动化立体仓库系统研究[J].系统工程与电子技术,2001,23(6):102-104.
Zhong Maiying,Tang Bingyong.Automated warehouse system based on electronic commerce environment[J].Systems Engineering and Electronics,2001,23(6):102-104.
[2]李晓刚,刘晋浩.码垛机器人的研究与应用现状、问题及对策[J].包装工程,2011,32(3):96-102.
Li Xiaogang,Liu Jinhao.Research and application situation,problems and solutions of palletizing robots[J].Packing Engineering,2011,32(3):96-102.
[3]武文杰.基于视觉处理和遗传算法的Tripod机器人最优轨迹控制[D].上海:东华大学,2015.
[4]Liu J,Wang Z,Chen Z,et al.Hierarchical Markov decision based path planning for palletizing robot[J].Telkomnika Indonesian Journal of Electrical Engineering,2014,12(3):1842-1849.
[5]Scheurer C,Zimmermann U E.Path planning method for palletizing tasks using workspace cell decomposition[C]//IEEE International Conference on Robotics and Automation.Xplore:IEEE,2011:1-4.
[6]冯倩.九州通医药物流中心货位分配及拣选作业优化研究[D].北京:北京交通大学,2014.
[7]徐敏,陈州尧,李俊蒂.基于模拟退火算法的码垛机器人码垛路径规划[J].包装工程,2015(15):95-98.
Xu Min,Chen Zhouyao,Li Jundi.Path planning of palletizing robot stacking based on simulated annealing algorithm[J].Packing Engineering,2015(15):95-98.
[8]姚佳茵.CG项目中进度优化算法的研究与实现[D].南京:南京理工大学自动化学院,2008.
[9]Xu Mingji,Li Sheng,Guo Jian.Optimization of multiple traveling salesman problem based on simulated annealing genetic algorithm[C]//13th Global Congress on Manufacturing and Management,GCMM2016.Zhengzhou,China.EDP Sciences,2017:241-248.
[10]Yang X S.Nature-inspired metaheuristic algorithms[M].[S.l.]:Luniver Press,2010.
[11]Benvenuto N,Marchesi M,Uncini A.Applications of simulated annealing for the design of special digital filters[J].IEEE Transactions on Signal Processing,1992,40(2):323-332.
[12]罗亚中,唐国金,田蕾.基于模拟退火算法的最优控制问题全局优化[J].南京理工大学学报,2005,29(2):144-148.
Luo Yazhong,Tang Guojin,Tian Lei.Global optimization of optimal control problems based on simulated annealing[J].Journal of Nanjing University of Science and Technology,2005,29(2):144-148.
[13]罗立宏,冯开平,叶家玮.基于摇瓶策略求解二维不规则件排样问题[J].南京理工大学学报,2015,39(2):194-201.
Luo Lihong,Feng Kaiping,Ye Jiawei.2-D irregular polygon nesting with shaking bottle strategy[J].Journal of Nanjing University of Science and Technology,2015,39(2):194-201.
[14]刘好德,杨晓光.基于改进遗传算法的公交线网优化设计研究[J].计算机工程与应用,2007,43(8):10-14.
Liu Haode,Yang Xiaoguang.Research on transit routes network design based on improved genetic algorithm[J].Computer Engineering and Application,2007,43(8):10-14.

备注/Memo

备注/Memo:
收稿日期:2017-01-05 修回日期:2017-02-20基金项目:国家自然科学基金(61673214,61673217,61673219); 江苏省“六大人才高峰”项目(XNYQC-CXTD-001); 天津市科技重大专项与工程项目(15ZXZNGX00250)
作者简介:许鸣吉(1993-),男,硕士生,主要研究方向:智能控制、优化算法,E-mail:jahsonxu@hotmail.com; 通讯作者:李胜(1976-),男,博士,副教授,主要研究方向:非线性系统控制、机器人控制,E-mail:livic@126.com。
引文格式:许鸣吉,李胜,陈庆伟,等. 基于自适应模拟退火遗传算法的码垛次序规划方法[J].南京理工大学学报,2017,41(4):486-493.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-08-31